Theoretical insights into the hydrogen bonding interaction in the complexation of epinephrine with uracil

  • Ling PeiEmail author
  • Da-Zhi Li
  • Li-Juan Zhang
Original Paper


The present study is aimed at probing the hydrogen bonding interaction between epinephrine and uracil by means of density functional theory calculations concerning their complexation’s geometries, interaction energies, and vibrational frequencies. Geometry optimization was carried out giving 19 stable geometries of epinephrine-uracil complex with interaction energies in a range of – 21.51 to – 62.37 kJ mol−1 using the basis set superposition error (BSSE) correction. The analysis of structure and vibration shows that the hydrogen bonding elongates the length of corresponding bond O(N)–H and decreases the symmetric stretching vibrational frequency, which indicates red-shifted H-bonding interactions in all the geometries. Additionally, the analysis with theories of natural bond orbital (NBO), atoms in molecules (AIM), and the reduced density gradient (RDG) of hydrogen bonding properties and characteristics of the 19 geometries suggests that the hydrogen bonding in all the optimized structures of epinephrine-uracil complex is kind of a closed-shell interaction and mainly electrostatic dominant.


Hydrogen bond DFT method Epinephrine Uracil NBO AIM RDG 


Funding information

The work was supported by the Natural Science Foundation of Shandong Province (ZR2017MB023).


  1. 1.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, BerlinCrossRefGoogle Scholar
  3. 3.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefGoogle Scholar
  4. 4.
    Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658CrossRefGoogle Scholar
  5. 5.
    Yagai S, Nakajima T, Kishikawa K et al (2005) Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc 127:11134–11139CrossRefGoogle Scholar
  6. 6.
    Dong K, Zhang S, Wang J (2016) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52:6744–6764CrossRefGoogle Scholar
  7. 7.
    Roohi H, Nowroozi AR, Anjomshoa E (2011) H-bonded complexes of uracil with parent nitrosamine: a quantum chemical study. Comput Theor Chem 965:211–220CrossRefGoogle Scholar
  8. 8.
    Deepa P, Kolandaivel P, Senthilkumar K (2008) Interactions of anticancer drugs with usual and mismatch base pairs-density functional theory studies. Biophys Chem 136:50–58CrossRefGoogle Scholar
  9. 9.
    El-Gogary TM (2009) Interaction of angelicin with DNA-bases (III) DFT and ab initio second-order Møller–Plesset study. Int J Quantum Chem 110:1445–1454Google Scholar
  10. 10.
    El-Gogary TM, Koehler G (2007) Interaction of psoralens with DNA-bases (I). An ab initio quantum chemical, density functional theory and second-order Møller–Plesset perturbational study. J Mol Struct 808:97–109CrossRefGoogle Scholar
  11. 11.
    El-Gogary TM, Koehler G (2009) Interaction of psoralens with DNA-bases (II): an ab initio quantum chemical, density functional theory and second-order Møller-Plesset perturbational study. J Mol Struct 895:57–64CrossRefGoogle Scholar
  12. 12.
    Nakhaei E, Nowroozi A, Ravari F (2017) The hydrogen-bonded complexes of the 5-fluorouracil with the DNA purine bases: a comprehensive quantum chemical study. Struct Chem 29:69–80CrossRefGoogle Scholar
  13. 13.
    ÇarÇabal P, Snoek LC, Mourik TV (2005) A computational and spectroscopic study of gas phase conformers of adrenaline. Mol Phys 103:1633–1639CrossRefGoogle Scholar
  14. 14.
    Gunasekaran S, Thilak R, Kumar PS (2007) Vibrational mode and normal coordinate analysis of adrenaline and dopamine. Indian J Pure Appl Phys 45:884–892Google Scholar
  15. 15.
    Melandri SM (2004) Intramolecular hydrogen bonds and conformational properties of biogenic amines: a free-jet microwave study of tyramine. A Phys Chem Chem Phys 6:2863CrossRefGoogle Scholar
  16. 16.
    Martinez SJ, Alfano JC, Levy DH (2009) Electronic structure of aromatic amino acid studied by soft X-ray spectroscopy. J Phys Chem A 158:82Google Scholar
  17. 17.
    Yoon I, Seo K, Lee S, Lee Y, Kim B (2007) Conformational study of tyramine and its water clusters by laser spectroscopy. J Phys Chem A 111:1800–1807CrossRefGoogle Scholar
  18. 18.
    Makara K, Misawa K, Miyazaki M, Mitsuda H, Ishiuchi S, Fujii M (2008) Vibrational signature of conformers in tyramine studied by IR dip and dispersed fluorescence spectroscopies. J Phy Chem A 112:13463–13469CrossRefGoogle Scholar
  19. 19.
    Jha O, Yadav TK, Yadav RA (2018) Structural and vibrational study of a neurotransmitter molecule: dopamine [4-(2-aminoethyl) benzene-1, 2-diol]. Spectrochim Acta A 189:473–484CrossRefGoogle Scholar
  20. 20.
    Yadav T, Sahu RK, Mukherjee V (2019) Molecular modeling and spectroscopic investigation of a neurotransmitter: epinephrine. J Mol Struct 1176:94–109CrossRefGoogle Scholar
  21. 21.
    Joel I, Jorg N, Matthias S (2004) On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A 108:5692–5698CrossRefGoogle Scholar
  22. 22.
    Sun YP, Ren XH, Wang HJ et al (2009) Hydrogen-bonding interaction in a complex of amino acid with urea studied by DFT calculations. Struct Chem 20:213–220CrossRefGoogle Scholar
  23. 23.
    Oliveira BG, Lima MC, Pitta IR et al (2010) A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers. J Mol Model 16:119CrossRefGoogle Scholar
  24. 24.
    Kheffache D, Guemmour H, Dekhira A et al (2013) Conformational analysis and intramolecular hydrogen bonding of cis −3-aminoindan-1-ol: a quantum chemical study. J Mol Model 19:4837CrossRefGoogle Scholar
  25. 25.
    Zheng YZ, He HY, Zhou Y et al (2014) Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide. J Mol Struct 1069:140–146CrossRefGoogle Scholar
  26. 26.
    Zhou Y, Zheng YZ, Sun HY et al (2014) Hydrogen bonding interactions in ethanol and acetonitrile binary system: a near and mid-infrared spectroscopic study. J Mol Struct 1069:251–257CrossRefGoogle Scholar
  27. 27.
    Sekhar MC, Venkatesulu A, Mohan T et al (2015) Density functional theory, natural bond orbital and atoms in molecule analyses on the hydrogen bonding interactions in 2-chloroaniline-carboxylic acids. Orient J Chem 31:897–906CrossRefGoogle Scholar
  28. 28.
    Zhang X, Gong X (2015) Theoretical studies on the structures, intra- and inter-molecular hydrogen bonding interactions in HNF and HNF–H2O clusters in the gaseous, aqueous and solid phases. Mol Simul 41:1528–1540CrossRefGoogle Scholar
  29. 29.
    Al-Tamimi A-MS (2016) Electronic structure, hydrogen bonding and spectroscopic profile of a new 1,2,4-triazole-5(4H)-thione derivative: a combined experimental and theoretical (DFT) analysis. J Mol Struct 1120:215–227CrossRefGoogle Scholar
  30. 30.
    Jian Z, Yang X, Chen D et al (2016) Theoretical studies of hydrogen bonding interactions between novolac resin and DMP-30. RSC Adv 6:114560–114565CrossRefGoogle Scholar
  31. 31.
    Tao Y, Li X, Han L et al (2016) Spectroscopy (FT-IR, FT-Raman), hydrogen bonding, electrostatic potential and HOMO-LUMO analysis of tioxolone based on DFT calculations. J Mol Struct 1121:188–195CrossRefGoogle Scholar
  32. 32.
    Mishra SK, Suryaprakash N (2017) Intramolecular hydrogen bonding involving organic fluorine: NMR investigations corroborated by DFT-based theoretical calculations. Molecules 22:423–467CrossRefGoogle Scholar
  33. 33.
    Srivastava R, Al-Omary FAM, El-Emam AA et al (2017) A combined experimental and theoretical DFT (B3LYP, CAM-B3LYP and M06-2X) study on electronic structure, hydrogen bonding, solvent effects and spectral features of methyl 1H-indol-5-carboxylate. J Mol Struct 1137:725–741CrossRefGoogle Scholar
  34. 34.
    Subhapriya G, Kalyanaraman S, Gandhimathi S et al (2017) Structural, intramolecular hydrogen bonding and vibrational studies on 3-amino-4-methoxy benzamide using density functional theory. J Chem Sci 129:259–270CrossRefGoogle Scholar
  35. 35.
    Subhapriya G, Kalyanaraman S, Surumbarkuzhali N et al (2017) Intermolecular hydrogen bonding, structural and vibrational assignments of 2, 3, 4, 5-etrafluorobenzoic acid using density functional theory. J Mol Struct 1128:534–543CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian09 revision D01 Gaussian Inc, WallingfordGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  38. 38.
    Zheng YZ, Zhou Y, Liang Q et al (2016) Theoretical studies on the hydrogen-bonding interactions between luteolin and water: a DFT approach. J Mol Model 22:257CrossRefGoogle Scholar
  39. 39.
    Zheng YZ, Zhou Y, Liang Q et al (2016) Hydrogen-bonding interactions between apigenin and ethanol/water: a theoretical study. Sci Rep 6:34647CrossRefGoogle Scholar
  40. 40.
    Zheng YZ, Zhou Y, Liang Q et al (2017) Solvent effects on the intramolecular hydrogen-bond and anti-oxidative properties of apigenin: a DFT approach. Dyes Pigments 141:179–187CrossRefGoogle Scholar
  41. 41.
    Zheng YZ, Xu J, Liang Q et al (2017) A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol. J Mol Model 23:245CrossRefGoogle Scholar
  42. 42.
    Zheng YZ, Zhou Y, Liang Q et al (2016) A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water. J Mol Model 22:95CrossRefGoogle Scholar
  43. 43.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  44. 44.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  45. 45.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  46. 46.
    Johnson ER, Keinan S, Mori-Sanchez P et al (2010) Revealing non-covalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173CrossRefGoogle Scholar
  49. 49.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  50. 50.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38CrossRefGoogle Scholar
  51. 51.
    Pauling L (1960) The Nature Of The Chemical Bond. Cornell University Press, New YorkGoogle Scholar
  52. 52.
    Afshan M, Fatemeh FN (2008) Detection and evaluation of hydrogen bond strength in nucleic acid base pairs. J Phys Chem A 112:281–295CrossRefGoogle Scholar
  53. 53.
    Kowalska A, Stobiecka A, Wysocki S (2009) A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct 901:88–95CrossRefGoogle Scholar
  54. 54.
    Koch U, Popelie PLA (1995) Characterization of C—H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  55. 55.
    Popelie PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878CrossRefGoogle Scholar
  56. 56.
    Pacios LF (2004) Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J Phys Chem A 108:1177–1188CrossRefGoogle Scholar
  57. 57.
    Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102CrossRefGoogle Scholar
  58. 58.
    Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and SafetyBinzhou UniversityBinzhouPeople’s Republic of China

Personalised recommendations