Organometallic complexes of carbon nanotori

  • Roxana M. del Castillo
  • Alan Miralrio
  • Citlalli Rios
  • Roberto SalcedoEmail author
Original Paper


New organometallic complexes of carbon nanotori were designed and theoretically described by means of density functional theory. After a systematic structural search, it was found that energetically favorable complexes were formed by the metal atoms Cr and Ni, both located at the center of a nanotorus with diameter around 5 Å and 120 carbon atoms. The nature of the metal–nanotorus interaction shows a partial polar–covalent character, different from those found in other well-known organometallic compounds. Interactions were studied through molecular orbitals and thermodynamic stability. Ten bonds are set up between the metal atom and nanotorus, confirmed by electron density topology analysis, showing ten bond critical points among the metal atoms and the surrounding carbon atoms. The response of the induced electron current caused by a magnetic field perpendicular to the nanotorus was analyzed to explain the electron delocalization and aromaticity of the complexes. Only in the case of the chromium complex, the electron density is fully delocalized on the whole complex. According to a geometry-based index of aromaticity, interaction with the metal atom only changes the aromatic character of the carbon rings slightly. Also, induced currents were used to elucidate the presence of a ferrotoroidal behavior. The isolated nanotorus and its compound with a single Ni atom have well-defined ferrotoroidal behavior because they present broken symmetries and could help to design a topological insulator. Meanwhile, the nanotorus with a Cr atom at the center lacks ferrotoroidal behavior as a consequence of the absence of magnetic vortices.

Graphical abstract

Organometallic complex of carbon nanotorus with chromium and induced currents on it by applying an external magnetic field


Organometallic compounds Carbon nanotorus Ferrotoroid DFT 



The authors are grateful to UNAM-DGAPA for the Postdoctoral grant of Alan Miralrio. Additionally the authors want to thank María Teresa Vázquez, Oralia Jiménez, Alberto López, Cain González, and Alejandro Pompa for technical help. Many thanks are also due to DGAPA-UNAM for grants corresponding to the DGAPA PAPIIT IN203816 and RN203816 projects.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  2. 2.
    Liu J, Dai H, Hafner JH et al (1997) Fullerene “crop circles”. Nature 385:780–781. CrossRefGoogle Scholar
  3. 3.
    Arezoomand M, Taeri B (2009) The full symmetry and irreducible representations of nanotori. Acta Crystallogr A 65:249–252. CrossRefPubMedGoogle Scholar
  4. 4.
    László I, Rassat A, Fowler PW, Graovac A (2001) Topological coordinates for toroidal structures. Chem Phys Lett 342:369–374. CrossRefGoogle Scholar
  5. 5.
    Chuang C, Guan J, Witalka D et al (2015) Relative stability and local curvature analysis in carbon nanotori. Phys Rev B.
  6. 6.
    Dunlap BI (1992) Connecting carbon tubules. Phys Rev B 46:1933–1936. CrossRefGoogle Scholar
  7. 7.
    Ghahari F, Walkup D, Gutiérrez C et al (2017) An on/off berry phase switch in circular graphene resonators. Science 356:845–849. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu L, Guo GY, Jayanthi CS, Wu SY (2002) Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett.
  9. 9.
    Glukhova OE, Kondrashov VA, Nevolin VK et al (2016) Prediction of the stability and electronic properties of carbon nanotori synthesized by a high-voltage pulsed discharge in ethanol vapor. Semiconductors 50:502–507. CrossRefGoogle Scholar
  10. 10.
    Cheong S-W, Talbayev D, Kiryukhin V, Saxena A (2018) Broken symmetries, non-reciprocity, and multiferroicity. Npj Quantum Mater.
  11. 11.
    Vessally E, Alkorta I, Ahmadi S et al (2019) A DFT study on nanocones, nanotubes (4,0), nanosheets and fullerene C 60 as anodes in Mg-ion batteries. RSC Adv 9:853–862. CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Cheng X (2018) Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C 24 fullerene: a DFT study. Chem Phys 505:26–33. CrossRefGoogle Scholar
  13. 13.
    del Castillo R, Salcedo R, Martínez A et al (2019) Electronic peculiarities of a self-assembled M12L24 nanoball (M = Pd+2, Cr, or Mo). Molecules 24:771. CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Axet MR, Dechy-Cabaret O, Durand J et al (2016) Coordination chemistry on carbon surfaces. Coord Chem Rev 308:236–345. CrossRefGoogle Scholar
  15. 15.
    Miralrio A, Muñoz-Castro A, King RB, Sansores LE (2019) M@C 50 as higher intermediates towards large endohedral metallofullerenes: theoretical characterization, aromatic and bonding properties from relativistic DFT calculations. J Phys Chem C 123:1429–1443. CrossRefGoogle Scholar
  16. 16.
    Miralrio A, Muñoz-Castro A, King RB, Sansores LE (2018) Intermediates for larger endohedral metallofullerenes: theoretical characterization of M@C44 species. J Phys Chem C 122:798–807. CrossRefGoogle Scholar
  17. 17.
    Soto D, Salcedo R (2012) Coordination modes and different hapticities for fullerene organometallic complexes. Molecules 17:7151–7168. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113. CrossRefPubMedGoogle Scholar
  19. 19.
    Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843–892. CrossRefGoogle Scholar
  20. 20.
    Gupta S, Saxena A (2018) Importance of topology in materials science. In: Gupta S, Saxena A (eds) The role of topology in materials. Springer, Cham, pp 3–33CrossRefGoogle Scholar
  21. 21.
    Alisafaei F, Ansari R, Alipour A (2014) A semi-analytical approach for the interaction of carbon nanotori. Physica E Low Dimens Syst Nanostruct 58:63–66. CrossRefGoogle Scholar
  22. 22.
    Sharifian A, Baghani M, Wu J et al (2019) Insight into geometry-controlled mechanical properties of spiral carbon-based nanostructures. J Phys Chem C 123:3226–3238. CrossRefGoogle Scholar
  23. 23.
    Wu J, Zhao H, Liu J et al (2018) Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures. Carbon 133:335–349. CrossRefGoogle Scholar
  24. 24.
    Wu J, Shi Q, Zhang Z et al (2018) Nature-inspired entwined coiled carbon mechanical metamaterials: molecular dynamics simulations. Nanoscale 10:15641–15653. CrossRefPubMedGoogle Scholar
  25. 25.
    Yang S, Liu Z, Jin L et al (2017) Surface plasmon polariton mediated multiple toroidal resonances in 3D folding metamaterials. ACS Photon 4:2650–2658. CrossRefGoogle Scholar
  26. 26.
    Guo S, Talebi N, Campos A et al (2019) Radiation of dynamic toroidal moments. ACS Photon. CrossRefGoogle Scholar
  27. 27.
    Ahmadivand A, Gerislioglu B (2018) Directional toroidal dipoles driven by oblique poloidal and loop current flows in plasmonic meta-atoms. J Phys Chem C 122:24304–24308. CrossRefGoogle Scholar
  28. 28.
    Talebi N, Guo S, van Aken PA (2018) Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics 7:93–110. CrossRefGoogle Scholar
  29. 29.
    Thorner G, Kiat J-M, Bogicevic C, Kornev I (2014) Axial hypertoroidal moment in a ferroelectric nanotorus: a way to switch local polarization. Phys Rev B.
  30. 30.
    Tuz VR, Khardikov VV, Kivshar YS (2018) All-dielectric resonant metasurfaces with a strong toroidal response. ACS Photon 5:1871–1876. CrossRefGoogle Scholar
  31. 31.
    Baum M, Schmalzl K, Steffens P et al (2013) Controlling toroidal moments by crossed electric and magnetic fields. Phys Rev B.
  32. 32.
    Xie K, Liu Z, Wang Y et al (2018) A facile synthesis of hierarchical MoS 2 nanotori with advanced lithium storage properties. New J Chem 42:10935–10939. CrossRefGoogle Scholar
  33. 33.
    Wang C-C, Tang T-H, Wang Y (2000) Theoretical and experimental characterization of Cr−L multiple bonds (L = O, N, and C). J Phys Chem A 104:9566–9572. CrossRefGoogle Scholar
  34. 34.
    Lang H, Packheiser R, Walfort B (2006) Organometallic π-tweezers, NCN pincers, and ferrocenes as molecular “tinkertoys” in the synthesis of multiheterometallic transition-metal complexes. Organometallics 25:1836–1850. CrossRefGoogle Scholar
  35. 35.
    Miralrio A, Enrique Sansores L (2017) Structures, stabilities, and electronic properties of fullerene C36 with endohedral atomic Sc, Y, and La: a dispersion-corrected DFT study. Int J Quantum Chem 117:e25335. CrossRefGoogle Scholar
  36. 36.
    Herges R, Geuenich D (2001) Delocalization of electrons in molecules. J Phys Chem A 105:3214–3220. CrossRefGoogle Scholar
  37. 37.
    Gershoni-Poranne R, Stanger A (2015) Magnetic criteria of aromaticity. Chem Soc Rev 44:6597–6615. CrossRefPubMedGoogle Scholar
  38. 38.
    Merino G, Heine T, Seifert G (2004) The induced magnetic field in cyclic molecules. Chem Eur J 10:4367–4371. CrossRefPubMedGoogle Scholar
  39. 39.
    Papasimakis N, Fedotov VA, Savinov V et al (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271. CrossRefPubMedGoogle Scholar
  40. 40.
    Harris AB (2010) A system exhibiting toroidal order. Phys Rev B.
  41. 41.
    Afanasiev GN (2001) Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems. J Phys D Appl Phys 34:539–559. CrossRefGoogle Scholar
  42. 42.
    Dubovik VM, Martsenyuk MA, Saha B (2000) Material equations for electromagnetism with toroidal polarizations. Phys Rev E 61:7087–7097. CrossRefGoogle Scholar
  43. 43.
    Zel’Dovich IB (1958) Electromagnetic interaction with parity violation. Sov Phys JETP 6:1184–1186Google Scholar
  44. 44.
    Dubovik VM, Tugushev VV (1990) Toroid moments in electrodynamics and solid-state physics. Phys Rep 187:145–202. CrossRefGoogle Scholar
  45. 45.
    Raab RE, De Lange OL (2005) Multipole theory in electromagnetism: classical, quantum, and symmetry aspects, with applications. Oxford University Press, OxfordGoogle Scholar
  46. 46.
    Naumov II, Bellaiche L, Fu H (2004) Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432:737–740. CrossRefPubMedGoogle Scholar
  47. 47.
    Shimada T, Lich LV, Nagano K et al (2015) Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials. Sci Rep.
  48. 48.
    Rabe KM (2007) Solid-state physics: response with a twist. Nature 449:674–675. CrossRefPubMedGoogle Scholar
  49. 49.
    Liu Z, Yang B, Cao W et al (2017) Enhanced energy storage with polar vortices in ferroelectric nanocomposites. Phys Rev Appl.
  50. 50.
    López-Chavéz E, Peña-Castañeda Y, García-Quiroz A et al (2017) Ti-decorated C120 nanotorus: a new molecular structure for hydrogen storage. Int J Hydrog Energy 42:30237–30241. CrossRefGoogle Scholar
  51. 51.
    Bezuglov DA, Sinyavsky GP, Cherckesova LV et al (2015) Resonance phemomena in photonic and magnonic crystals of multiferroics as part of thin-film fractal structures. 2015 International Conference on Antenna Theory and Techniques (ICATT). IEEE, Kharkiv, pp 1–3Google Scholar
  52. 52.
    Bezuglov DA, Sinyavsky GP, Cherckesova LV et al (2015) Nonlinear phenomenons and effects in multiferroic crystal at influence of external magnetic fields. 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, Omsk, pp 1–4Google Scholar
  53. 53.
    Sounas DL, Alù A (2017) Non-reciprocal photonics based on time modulation. Nat Photonics 11:774–783. CrossRefGoogle Scholar
  54. 54.
    Leviyev A, Stein B, Christofi A et al (2017) Nonreciprocity and one-way topological transitions in hyperbolic metamaterials. APL Photon 2:076103. CrossRefGoogle Scholar
  55. 55.
    Wakatsuki R, Saito Y, Hoshino S et al (2017) Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci Adv 3:e1602390. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tokura Y, Nagaosa N (2018) Nonreciprocal responses from non-centrosymmetric quantum materials. Nat Commun.
  57. 57.
    Christofi A, Stefanou N (2018) Metal-coated magnetic nanoparticles in an optically active medium: a nonreciprocal metamaterial. Phys Rev B.
  58. 58.
    Barton DR, Alaeian H, Lawrence M, Dionne J (2018) Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial. Phys Rev B.
  59. 59.
    Zhu ZY, Cheng YC, Schwingenschlögl U (2011) Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B.
  60. 60.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396–1396. CrossRefGoogle Scholar
  62. 62.
    Miralrio A, Sansores LE (2016) On the search of stable, aromatic and ionic endohedral compounds of C28: a theoretical study. Comput Theor Chem 1083:53–63. CrossRefGoogle Scholar
  63. 63.
    Nazarian D, Ganesh P, Sholl DS (2015) Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal–organic frameworks. J Mater Chem A 3:22432–22440. CrossRefGoogle Scholar
  64. 64.
    Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591. CrossRefPubMedGoogle Scholar
  65. 65.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057. CrossRefPubMedGoogle Scholar
  67. 67.
    Ahlrichs R, Armbruster MK, Bachorz RA et al (2009) TURBOMOLE 6.5, Universität Karlsruhe. Accessed 3 April 2018
  68. 68.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. CrossRefPubMedGoogle Scholar
  69. 69.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096. CrossRefGoogle Scholar
  70. 70.
    Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28:204–221. CrossRefPubMedGoogle Scholar
  71. 71.
    Frisch M, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision D. 01. Gaussian, Inc., WallingfordGoogle Scholar
  72. 72.
    Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems. J Chem Inf Model 33:70–78. CrossRefGoogle Scholar
  73. 73.
    Sánchez-González Á, Martín-Martínez FJ, Dobado JA (2017) The role of weak interactions in lignin polymerization. J Mol Model.
  74. 74.
    Bosquez M, Cambray A, Miralrio A et al (2017) Weak bonds between molecular tweezers and their guests. Comput Theor Chem 1115:335–343. CrossRefGoogle Scholar
  75. 75.
    Alkorta I, Blanco F, Elguero J et al (2009) Carbon⋯carbon weak interactions. J Phys Chem A 113:8387–8393. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Departamento de CienciasTecnologico de Monterrey, Campus TolucaTolucaMexico
  3. 3.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations