Skip to main content
Log in

Thermal decomposition mechanism of O-acetyl-4-O-methylglucurono-xylan

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

O-acetyl-4-O-methylglucurono-xylan is selected as a model compound because of its abundant O-acetyl and 4-O-methylglucuronic acid groups as side chains of hemicellulose. The detailed decomposition pathways of O-acetyl-4-O-methylglucurono-xylan are investigated by using density functional theory (DFT) and transition state theory. In addition, the possible pyrolysis pathways of 4-O-methylglucuronic acid, based on the Mayer bond order values, are predicted. The results indicate that the most energetically favored initial reaction of O-acetyl-4-O-methylglucurono-xylan is the cleavage of the 4-O-methylglucuronic acid unit. Furfural can be obtained through the ring-opening of 4-O-methylglucuronic acid in three different pathways. The O-methyl group is predominantly responsible for the generation of CH3OH. In addition, the formation pathways of a special furan-derived product 2-hydroxymethylene-tetrahydrofuran-3-one are first validated by DFT calculation. The rate-determining steps to form 2-hydroxymethylene-tetrahydrofuran-3-one are the cyclization reaction and enol–keto tautomerization. Anhydroxylopyranose and dianhydroxylopyranose can be produced through intramolecular dehydration and glycosidic bond cleavage reactions.

The main pyrolysis products distribution of O-acetyl-4-O-methylglucurono-xylan

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7
Scheme 4
Fig. 8
Fig. 9
Scheme 5
Fig. 10
Scheme 6
Fig. 11
Scheme 7
Fig. 12
Scheme 8
Fig. 13
Scheme 9

Similar content being viewed by others

References

  1. Cai W, Liu R, He Y, Chai M, Cai J (2018) Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process Technol 171:308–317

    Article  CAS  Google Scholar 

  2. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  CAS  Google Scholar 

  3. Wu Y, Wu S, Zhang H, Xiao R (2018) Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts. Fuel Process Technol 179:436–442

    Article  CAS  Google Scholar 

  4. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  5. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  6. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    Article  CAS  PubMed Central  Google Scholar 

  7. Wang S, Ru B, Lin H, Sun W (2015) Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:243–251

    Article  Google Scholar 

  8. Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis 87:199–206

    Article  CAS  Google Scholar 

  9. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45

    Article  CAS  Google Scholar 

  10. Wang S, Ru B, Dai G, Sun W, Qiu K, Zhou J (2015) Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresour Technol 190:211–218

    Article  CAS  PubMed Central  Google Scholar 

  11. Huang X, Cheng D-g, Chen F, Zhan X (2016) Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study. Renew Energy 96:490–497

    Article  CAS  Google Scholar 

  12. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  13. Chen J, Wang S, Lu L, Zhang X, Liu Y (2018) Improved catalytic upgrading of simulated bio-oil via mild hydrogenation over bimetallic catalysts. Fuel Process Technol 179:135–142

    Article  CAS  Google Scholar 

  14. Dai G, Wang S, Zou Q, Huang S (2018) Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5. Fuel Process Technol 179:319–323

    Article  CAS  Google Scholar 

  15. Lu Q, Guo H-q, Zhou M-x, Cui M-s, Dong C-q, Yang Y-p (2018) Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo 2 N/HZSM-5 catalyst. Fuel Process Technol 173:134–142

    Article  CAS  Google Scholar 

  16. Zhou X, Li W, Mabon R, Broadbelt LJ (2018) A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci 11:1240–1260

    Article  CAS  Google Scholar 

  17. Zhao C, Jiang E, Chen A (2016) Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J Energy Inst 90:902–913

    Article  Google Scholar 

  18. Wang S, Ru B, Lin H, Luo Z (2013) Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresour Technol 143:378–383

    Article  CAS  PubMed Central  Google Scholar 

  19. Wang S-r, Liang X-j (2013) Mechanism of xylan pyrolysis by Py-GC/MS. Chem Res Chin Univ 29:782–787

    Article  Google Scholar 

  20. Huang J, He C, Wu L, Tong H (2016) Thermal degradation reaction mechanism of xylose: a DFT study. Chem Phys Lett 658:114–124

    Article  CAS  Google Scholar 

  21. Li Z, Liu C, Xu X, Li Q (2017) A theoretical study on the mechanism of xylobiose during pyrolysis process. Comput Theor Chem 1117:130–140

    Article  CAS  Google Scholar 

  22. Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 4:636–643

    Article  CAS  PubMed Central  Google Scholar 

  23. Zhang J, Choi YS, Yoo CG, Kim TH, Brown RC, Shanks BH (2015) Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3:293–301

    Article  Google Scholar 

  24. Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis 78:328–336

    Article  CAS  Google Scholar 

  25. Mayer I (1985) Bond orders and valences in the SCF theory: a comment. Theor Chim Acta 67:315–322

    Article  CAS  Google Scholar 

  26. Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Zheng G, Bloino J, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Vreven T, Nakai H, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene KJM, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts SRR, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

  27. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Cheminform 41:157–167

    CAS  Google Scholar 

  28. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2015) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666

    Article  Google Scholar 

  29. Barreto PCRP, Vilela AFA, Gargano R (2003) A simple program to determine the reaction rate and thermodynamic properties of reacting system. J Mol Struct THEOCHEM 639:167–176

    Article  CAS  Google Scholar 

  30. Gokhale AA, Kandoi S, Greeley JP, Mavrikakis M, Dumesic JA (2004) Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chem Eng Sci 59:4679–4691

    Article  CAS  Google Scholar 

  31. Lu Q, Tian H-y, Hu B, Jiang X-y, Dong C-q, Yang Y-p (2016) Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde. J Anal Appl Pyrolysis 120:15–26

    Article  CAS  Google Scholar 

  32. Mayer I (1985) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274

    Article  Google Scholar 

  33. Rong C, Ding X, Zhu Y, Li Y, Wang L, Qu Y, Ma X, Wang Z (2012) Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohydr Res 350:77

    Article  CAS  PubMed Central  Google Scholar 

  34. Huang J, Liu C, Tong H, Li W, Wu D (2012) Theoretical studies on pyrolysis mechanism of xylopyranose. Comput Theor Chem 1001:44–50

    Article  CAS  Google Scholar 

  35. Paine JB, Pithawalla YB, Naworal JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. J Anal Appl Pyrolysis 82:10–41

    Article  CAS  Google Scholar 

  36. Peng Y, Wu S (2011) Fast pyrolysis characteristics of sugarcane bagasse hemicellulose, cellulose. Chem Technol 45:605–612

    CAS  Google Scholar 

  37. Yang H, Yan R, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 51576019) and the Graduate Research and Innovation Foundation of Chongqing, China (No. CYS18040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, C. & Li, Q. Thermal decomposition mechanism of O-acetyl-4-O-methylglucurono-xylan. J Mol Model 25, 234 (2019). https://doi.org/10.1007/s00894-019-4117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4117-1

Keywords

Navigation