Skip to main content
Log in

Stability conditions of armchair graphene nanoribbon bipolarons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Graphene nanoribbons are 2D hexagonal lattices with semiconducting band gaps. Below a critical electric field strength, the charge transport in these materials is governed by the quasiparticle mechanism. The quasiparticles involved in the process, known as polarons and bipolarons, are self-interacting states between the system charges and local lattice distortions. To deeply understand the charge transport mechanism in graphene nanoribbons, the study of the stability conditions for quasiparticles in these materials is crucial and may guide new investigations to improve the efficiency for a next generation of graphene-based optoelectronic devices. Here, we use a two-dimensional version of the Su–Schrieffer–Heeger model to investigate the stability of bipolarons in armchair graphene nanoribbons (AGNRs). Our findings show how bipolaron stability is dependent on the strength of the electron–phonon interactions. Moreover, the results show that bipolarons are dynamically stable in AGNRs for electric field strengths lower than 3.0 mV/Å. Remarkably, the system’s binding energy for a lattice containing a bipolaron is smaller than the formation energy of two isolated polarons, which suggests that bipolarons can be natural quasiparticle solutions in AGNRs.

Charge localization of bipolarons in armchair garphene nanoribbons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  2. Miao F, Wijeratne S, Zhang Y, Coskun UC, Bao W, Lau CN (2007) Science 317(5844):1530. https://doi.org/10.1126/science.1144359. https://science.sciencemag.org/content/317/5844/1530

    Article  CAS  PubMed  Google Scholar 

  3. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Nat Nanotechnol 5:722. https://doi.org/10.1038/nnano.2010.172

    Article  CAS  PubMed  Google Scholar 

  4. Huertas-Hernando D, Guinea F, Brataas A (2009) Phys Rev Lett 103:146801. https://doi.org/10.1103/PhysRevLett.103.146801. https://link.aps.org/doi/10.1103/PhysRevLett.103.146801

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324(5932):1312. https://doi.org/10.1126/science.1171245. https://science.sciencemag.org/content/324/5932/1312

    Article  CAS  PubMed  Google Scholar 

  6. Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Das Sarma S, Stormer HL, Kim P (2007) Phys Rev Lett 99:246803. https://doi.org/10.1103/PhysRevLett.99.246803. https://link.aps.org/doi/10.1103/PhysRevLett.99.246803

    Article  CAS  PubMed  Google Scholar 

  7. Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Phys Rev Lett 101:096802. https://doi.org/10.1103/PhysRevLett.101.096802. https://link.aps.org/doi/10.1103/PhysRevLett.101.096802

    Article  CAS  PubMed  Google Scholar 

  8. de Oliveira Neto PH, Teixeira JF, da Cunha WF, Gargano R, e Silva GM (2012) J Phys Chem Lett 3(20):3039. https://doi.org/10.1021/jz301247u

    Article  CAS  PubMed  Google Scholar 

  9. Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803. https://doi.org/10.1103/PhysRevLett.97.216803. https://link.aps.org/doi/10.1103/PhysRevLett.97.216803

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro LA, da Cunha WF, Fonseca ALA, e Silva GM, Stafström S (2015) J Phys Chem Lett 6(3):510. https://doi.org/10.1021/jz502460g

    Article  CAS  PubMed  Google Scholar 

  11. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Chem Rev 107(4):926. https://doi.org/10.1021/cr050140x

    Article  CAS  PubMed  Google Scholar 

  12. Onodera Y (1984) Phys Rev B 30:775. https://doi.org/10.1103/PhysRevB.30.775. https://link.aps.org/doi/10.1103/PhysRevB.30.775

    Article  CAS  Google Scholar 

  13. Brazoviskii SA, Kirova N (1981) JETP Lett 33:4

    Google Scholar 

  14. Boudreaux DS, Chance RR, Brédas JL, Silbey R (1983) Phys Rev B 28:6927. https://doi.org/10.1103/PhysRevB.28.6927. https://link.aps.org/doi/10.1103/PhysRevB.28.6927

    Article  CAS  Google Scholar 

  15. Lin-Liu YR, Maki K (1980) Phys Rev B 22:5754. https://doi.org/10.1103/PhysRevB.22.5754. https://link.aps.org/doi/10.1103/PhysRevB.22.5754

    Article  CAS  Google Scholar 

  16. Onodera Y, Okuno S (1983) J Physical Soc Japan 52(7):2478. https://doi.org/10.1143/JPSJ.52.2478

    Article  CAS  Google Scholar 

  17. Stafström S, Chao KA (1984) Phys Rev B 30:2098. https://doi.org/10.1103/PhysRevB.30.2098. https://link.aps.org/doi/10.1103/PhysRevB.30.2098

    Article  Google Scholar 

  18. Bredas JL, Street GB (1985) Acc Chem Res 18(10):309. https://doi.org/10.1021/ar00118a005

    Article  CAS  Google Scholar 

  19. Kuhn C (1989) Phys Rev B 40:7776. https://doi.org/10.1103/PhysRevB.40.7776. https://link.aps.org/doi/10.1103/PhysRevB.40.7776

    Article  CAS  Google Scholar 

  20. Silva GG, da Cunha WF, de Sousa Junior RT, Almeida Fonseca AL, Ribeiro Júnior LA, e Silva GM (2018) Phys Chem Chem Phys 20:16712. https://doi.org/10.1039/C8CP02373E

    Article  CAS  PubMed  Google Scholar 

  21. e Silva GM (2000) Phys Rev B 61:10777. https://doi.org/10.1103/PhysRevB.61.10777. https://link.aps.org/doi/10.1103/PhysRevB.61.10777

    Article  Google Scholar 

  22. Wang CL, Su ZB, Martino F (1986) Phys Rev B 33:1512. https://doi.org/10.1103/PhysRevB.33.1512. https://link.aps.org/doi/10.1103/PhysRevB.33.1512

    Article  CAS  Google Scholar 

  23. Dhanker R, Gray CL, Mukhopadhyay S, Nunez S, Cheng CY, Sokolov AN, Giebink NC (2017) Nat Commun 8(1):2252. https://doi.org/10.1038/s41467-017-02459-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di B, Meng Y, Wang YD, Liu XJ, An Z (2011) J Phys Chem B 115(30):9339. https://doi.org/10.1021/jp2006342

    Article  CAS  PubMed  Google Scholar 

  25. Su WP, Schrieffer JR, Heeger AJ (1979) Phys Rev Lett 42:1698. https://doi.org/10.1103/PhysRevLett.42.1698. https://link.aps.org/doi/10.1103/PhysRevLett.42.1698

    Article  CAS  Google Scholar 

  26. Su WP, Schrieffer JR, Heeger AJ (1980) Phys Rev B 22 :2099. https://doi.org/10.1103/PhysRevB.22.2099. https://link.aps.org/doi/10.1103/PhysRevB.22.2099

    Article  CAS  Google Scholar 

  27. Ferreira da Cunha W, de Oliveira Neto PH, Terai A, e Silva GM (2016) Phys Rev B 94:014301. https://doi.org/10.1103/PhysRevB.94.014301

    Article  CAS  Google Scholar 

  28. da Cunha WF, de Oliveira Neto PH, Ribeiro Junior LA, e Silva GM (2019) Phys Rev B 99:035405. https://doi.org/10.1103/PhysRevB.99.035405

    Article  CAS  Google Scholar 

  29. da Cunha WF, Ribeiro LA, Fonseca ALA, Gargano R, e Silva GM (2015) Carbon 91:171. https://doi.org/10.1016/j.carbon.2015.04.065

    Article  CAS  Google Scholar 

  30. Ribeiro LA, da Silva GG, de Sousa RT, Almeida Fonseca AL, da Cunha WF, e Silva GM (2018) Sci Report 8:1914. https://doi.org/10.1038/s41598-018-19893-y

    Article  CAS  Google Scholar 

  31. Silva GG, da Cunha WF, de Sousa Junior RT, Fonseca ALA, Junior LAR, e Silva GM (2018) Phys Chem Chem Phys 20:16712. https://doi.org/10.1039/C8CP02373E

    Article  CAS  PubMed  Google Scholar 

  32. Abreu AVP, Teixeira JF, Fonseca ALA, Gargano R, e Silva GM, Ribeiro LA (2016) J Phys Chem A 120(27):4901. https://doi.org/10.1021/acs.jpca.5b12482

    Article  CAS  PubMed  Google Scholar 

  33. Stafström S (2010) Chem Soc Rev 39:2484. https://doi.org/10.1039/b909058b

    Article  CAS  PubMed  Google Scholar 

  34. Ribeiro LA, da Cunha WF, de Oliveria Neto PH, Gargano R, e Silva GM (2013) J New Chem 37:2829. https://doi.org/10.1039/C3NJ00602F

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Brazilian Research Councils CNPq, CAPES, and FAPDF. This research work has the support of the Brazilian Ministry of Planning, Development and Management (Grants 005/2016 DIPLA – Planning and Management Directorate, and 11/2016 SEST – State-owned Federal Companies Secretariat) and the DPGU – Brazilian Union Public Defender (Grant 066/2016). L.A.R.J., B.G.E, and G.M.S gratefully acknowledge the financial support from FAPDF grants 0193.001511/2017, 0193.001.556/2017, and 0193.00176 6/2017, respectively. L.A.R.J. and G.M.S. gratefully acknowledge, respectively, the financial support from CNPq grants 302236/2018-0 and 304637/2018-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Magela e Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, A.V.P., Ribeiro Junior, L.A., Silva, G.G. et al. Stability conditions of armchair graphene nanoribbon bipolarons. J Mol Model 25, 245 (2019). https://doi.org/10.1007/s00894-019-4107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4107-3

Keywords

Navigation