Advertisement

Defective graphene domains in boron nitride sheets

  • Ramiro Marcelo dos Santos
  • Renato Batista Santos
  • Bernahrd Georg Enders Neto
  • Geraldo Magela e Silva
  • Luiz Antonio Ribeiro JuniorEmail author
Original Paper
  • 108 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

Novel two-dimensional materials have emerged as hybrid structures that combine graphene and hexagonal boron nitride (h-BN) domains. During their growth process, structural defects such as vacancies and change of atoms connectivity are unavoidable. In the present study, we use first-principle calculations to investigate the electronic structure of graphene domains endowed with a single carbon atom vacancy or Stone–Wales defects in h-BN sheets. The results show that both kinds of defects yield localized states within the bandgap. Alongside this change in the bandgap configuration, it occurs a splitting of the spin channels in such a way that electrons with up and down spins populate different energy levels above and below the Fermi level, respectively. Such a spin arrangement is associated to lattice magnetization. Stone–Wales defects solely point to the appearance of new intragap levels. These results demonstrated that vacancies could significantly affect the electronic properties of hybrid graphene/h-BN sheets.

Graphical Abstract

A Boron-Nitride sheet doped with a vacancy endowed Carbon domain

Keywords

Graphene Boron nitride Domains Defects Heterostructures 

Notes

Acknowledgements

The authors acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES. The authors also acknowledge the CENAPAD-SP for providing the computational facilities. L.A.R.J and G.M.S gratefully acknowledge the financial support from the Brazilian Research Council FAPDF grants 0193.001.511/2017 and 0193.001766/2017, respectively. L.A.R.J also wishes to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016). L.A.R.J. and G.M.S. gratefully acknowledge, respectively, the financial support from CNPq grants 302236/2018-0 and 304637/2018-1.

References

  1. 1.
    Li Q, Liu M, Zhang Y, Liu Z (2015) Small 12(1):32.  https://doi.org/10.1002/smll.201501766 CrossRefGoogle Scholar
  2. 2.
    Kan M, Li Y, Sun Q (2015) . Wiley Inter Reviews: Comp Mol Sci 6(1):65.  https://doi.org/10.1002/wcms.1237 CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) . Nature 490:192.  https://doi.org/10.1038/nature11458 CrossRefGoogle Scholar
  4. 4.
    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) . Science 303(5655):217.  https://doi.org/10.1126/science.1091979 CrossRefGoogle Scholar
  5. 5.
    Kan EJ, Wu X, Li Z, Zeng XC, Yang J, Hou JG (2008) . J Chem Phys 129(8):084712.  https://doi.org/10.1063/1.2971187 CrossRefGoogle Scholar
  6. 6.
    Chen L (2014) . Solid State Commun 191:59.  https://doi.org/10.1016/j.ssc.2014.03.026 CrossRefGoogle Scholar
  7. 7.
    Liu Y, Wu X, Zhao Y, Zeng XC, Yang J (2011) . J Phys Chem C 115(19):9442.  https://doi.org/10.1021/jp201350e CrossRefGoogle Scholar
  8. 8.
    Li S, Ren Z, Zheng J, Zhou Y, Wan Y, Hao L (2013) . J Appl Phys 113(3):033703.  https://doi.org/10.1063/1.4776208 CrossRefGoogle Scholar
  9. 9.
    Ouyang J, Long M, Zhang D, Zhang X, He J, Gao Y (2015) . Comput Condens Matter 4:40.  https://doi.org/10.1016/j.cocom.2015.08.001 CrossRefGoogle Scholar
  10. 10.
    Jung J, Qiao Z, Niu Q, MacDonald AH (2012) . Nano Lett 12(6):2936.  https://doi.org/10.1021/nl300610w CrossRefGoogle Scholar
  11. 11.
    Akman N, Ozdogan C (2018) . J Phys Chem Solids 115:187.  https://doi.org/10.1016/j.jpcs.2017.12.025 CrossRefGoogle Scholar
  12. 12.
    Ansari N, Nazari F, Illas F (2014) . Phys Chem Chem Phys 16:21473.  https://doi.org/10.1039/C4CP02552K CrossRefGoogle Scholar
  13. 13.
    Azevedo S, Kaschny JR, de Castilho CM, de Brito Mota F (2009) . Eur Phys J B 67(4):507.  https://doi.org/10.1140/epjb/e2009-00043-5 CrossRefGoogle Scholar
  14. 14.
    Lopez-Bezanilla A, Roche S (2012) . Phys Rev B 86:165420.  https://doi.org/10.1103/PhysRevB.86.165420 CrossRefGoogle Scholar
  15. 15.
    Bhowmick S, Singh AK, Yakobson BI (2011) . J Phys Chem C 115(20):9889.  https://doi.org/10.1021/jp200671p CrossRefGoogle Scholar
  16. 16.
    Ding N, Chen X, Wu CML (2016) . Sci Rep 6:31499.  https://doi.org/10.1038/srep31499 CrossRefGoogle Scholar
  17. 17.
    Fan X, Shen Z, Liu AQ, Kuo JL (2012) . Nanoscale 4:2157.  https://doi.org/10.1039/C2NR11728B CrossRefGoogle Scholar
  18. 18.
    Liu RF, Cheng C (2007) . Phys Rev B 76:014405.  https://doi.org/10.1103/PhysRevB.76.014405 CrossRefGoogle Scholar
  19. 19.
    Nascimento R, Martins JdR, Batista RJC, Chacham H (2015) . J Phys Chem C 119(9):5055.  https://doi.org/10.1021/jp5101347 CrossRefGoogle Scholar
  20. 20.
    Ramasubramaniam A, Naveh D (2011) . Phys Rev B 84:075405.  https://doi.org/10.1103/PhysRevB.84.075405 CrossRefGoogle Scholar
  21. 21.
    Si MS, Xue DS (2007) . Phys Rev B 75:193409.  https://doi.org/10.1103/PhysRevB.75.193409 CrossRefGoogle Scholar
  22. 22.
    Berseneva N, Gulans A, Krasheninnikov AV, Nieminen RM (2013) . Phys Rev B 87:035404.  https://doi.org/10.1103/PhysRevB.87.035404 CrossRefGoogle Scholar
  23. 23.
    Han GH, Rodríguez-Manzo JA, Lee CW, Kybert NJ, Lerner MB, Qi ZJ, Dattoli EN, Rappe AM, Drndic M, Johnson ATC (2013) . ACS Nano 7(11):10129.  https://doi.org/10.1021/nn404331f CrossRefGoogle Scholar
  24. 24.
    Chen S, Chen Z, Siahrostami S, Higgins D, Nordlund D, Sokaras D, Kim TR, Liu Y, Yan X, Nilsson E, Sinclair R, Nørskov JK, Jaramillo TF, Bao Z (2018) . J Am Chem Soc 140(25):7851.  https://doi.org/10.1021/jacs.8b02798 CrossRefGoogle Scholar
  25. 25.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) . Nat Mater 9:430.  https://doi.org/10.1038/nmat2711 CrossRefGoogle Scholar
  26. 26.
    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP, Babakhani A, Idrobo JC, Vajtai R, Lou J, Ajayan PM (2013) . Nat Nanotechnol 8:119.  https://doi.org/10.1038/nnano.2012.256 CrossRefGoogle Scholar
  27. 27.
    Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013) . Nat Mater 12:792.  https://doi.org/10.1038/nmat3695 CrossRefGoogle Scholar
  28. 28.
    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z (2013) . Nano Lett 13(7):3439.  https://doi.org/10.1021/nl4021123. PMID: 23758663CrossRefGoogle Scholar
  29. 29.
    Fan M, Wu J, Yuan J, Deng L, Zhong N, He L, Cui J, Wang Z, Behera SK, Zhang C, Lai J, Jawdat BI, Vajtai R, Deb P, Huang Y, Qian J, Yang J, Tour JM, Lou J, Chu CW, Sun D, Ajayan PM (2019) . Adv Mater 31(12):1805778.  https://doi.org/10.1002/adma.201805778 CrossRefGoogle Scholar
  30. 30.
    Lee JH, Choi YK, Kim HJ, Scheicher RH, Cho JH (2013) . J Phys Chem C 117(26):13435.  https://doi.org/10.1021/jp402403f CrossRefGoogle Scholar
  31. 31.
    Ghosh S, Chakrabarti R (2016) . J Phys Chem C 120(39):22681.  https://doi.org/10.1021/acs.jpcc.6b06943 CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) . J Phys Condens Matter 14(11):2745. http://stacks.iop.org/0953-8984/14/i=11/a=302 CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Junquera J, Paz O, Sánchez-Portal D, Artacho E (2001) . Phys Rev B 64:235111.  https://doi.org/10.1103/PhysRevB.64.235111. https://link.aps.org/doi/10.1103/PhysRevB.64.235111 CrossRefGoogle Scholar
  36. 36.
    Wang J, Ma F, Sun M (2017) . RSC Adv 7:16801.  https://doi.org/10.1039/C7RA00260B CrossRefGoogle Scholar
  37. 37.
    da Rocha Martins J, Chacham H (2011) . ACS Nano 5(1):385.  https://doi.org/10.1021/nn101809j CrossRefGoogle Scholar
  38. 38.
    Mazzoni MSC, Nunes RW, Azevedo S, Chacham H (2006) . Phys Rev B 73:073108.  https://doi.org/10.1103/PhysRevB.73.073108. https://link.aps.org/doi/10.1103/PhysRevB.73.073108 CrossRefGoogle Scholar
  39. 39.
    Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) . Rep Prog Phys 75(6):062501.  https://doi.org/10.1088/0034-4885/75/6/062501 CrossRefGoogle Scholar
  40. 40.
    Wang SP, Guo JG, Zhou LJ (2013) . Physica E: Low-dimensional Systems and Nanostructures 48:29.  https://doi.org/10.1016/j.physe.2012.11.002 CrossRefGoogle Scholar
  41. 41.
    Xiao J, Staniszewski J, Gillespie J (2010) . Mater Sci Eng A 527(3):715.  https://doi.org/10.1016/j.msea.2009.10.052 CrossRefGoogle Scholar
  42. 42.
    Cassabois G, Valvin P, Gil B (2016) . Nat Photonics 10:262.  https://doi.org/10.1038/nphoton.2015.277 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil
  2. 2.Federal Institute for Education, Science, and Technology Baiano, Senhor do BonfimBahiaBrazil
  3. 3.University of Brasília, PPG-CIMABrasíliaBrazil

Personalised recommendations