Skip to main content
Log in

Change in binding states between catabolite activating protein and DNA induced by ligand-binding: molecular dynamics and ab initio fragment molecular orbital calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The transcription mechanism of genetic information from DNA to RNA is efficiently controlled by regulatory proteins, such as catabolite activator protein (CAP), and their ligands. When cyclic AMP (cAMP) binds to CAP, the complex forms a dimer and binds specifically to DNA to activate the transcription mechanism. On the other hand, when cyclic GMP (cGMP) binds to CAP, the complex has no marked effect on the mechanism. In our previous study, based on molecular dynamics (MD) and ab initio fragment molecular orbital (FMO) methods, we elucidated which residues of CAP are important for the specific interactions between CAP and DNA in the CAP-monomer+DNA + cAMP complex. However, this monomer model for CAP cannot describe real interactions between the CAP-dimer and DNA because CAPs form a dimer before binding to DNA. Accordingly, here, we investigated stable structures and their electronic states for the CAP-dimer+DNA complex with cAMP or cGMP ligand, to clarify the influence of ligand-binding on the interactions between CAP-dimer and DNA. The MD simulations elucidated that the DNA-binding domains of CAP-dimer behave differently depending on the ligand bound to the CAP-dimer. In addition, FMO calculations revealed that the binding energy between CAP-dimer and DNA for the CAP-dimer+DNA + cAMP complex is larger than that for the CAP-dimer+DNA + cGMP complex, being consistent with experiments. It was also highlighted that the Arg185 and Lys188 residues of CAP-dimer are important for the binding between CAP-dimer and DNA. These results provide useful information for proposing new compounds that efficiently control the transcription mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bell CE, Lewis M (2000) A closer view of the conformation of the lac repressor bound to operator. Nat Struct Biol 7:209–214

    Article  CAS  Google Scholar 

  2. Napoli AA, Lawson CL, Ebright RH, Berman HM (2006) Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J Mol Biol 357:173–183

    Article  CAS  Google Scholar 

  3. Pastan I, Crombrugghe BD, Perlman RL, Varmus HE (1970) Regulation of inducible enzyme synthesis in escherichia coli by cyclic adenosine 3′, 5′-monophosphate. Science 169:339–344

    Article  CAS  Google Scholar 

  4. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  Google Scholar 

  5. Passner JM, Schullz SC, Steitz TA (2000) Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J Mol Biol 304:847–859

    Article  CAS  Google Scholar 

  6. Kim J, Adhya S, Garges S (1992) Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci USA 89:9700–9704

    Article  CAS  Google Scholar 

  7. Weber IT, Steitz TA (1987) Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J Mol Biol 198:311–326

    Article  CAS  Google Scholar 

  8. Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci USA 106:6927–6932

    Article  CAS  Google Scholar 

  9. Matsushita Y, Murakawa T, Shimamura K, Oishi M, Ohyama T, Kurita N (2015) Specific interactions between DNA and regulatory protein controlled by ligand-binding: ab initio molecular simulation. AIP Conference Proceedings 1649:121–129

    Article  CAS  Google Scholar 

  10. Hyper cube Inc. (2000) HyperChem 6.03. Gainesville, FL

  11. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of Protein pKa values. Proteins 61:704–721

    Article  CAS  Google Scholar 

  12. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783

    Article  CAS  Google Scholar 

  13. Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH (2011) PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comp 7:525–537

    Article  CAS  Google Scholar 

  14. Søndergard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comp 7:2284–2295

    Article  Google Scholar 

  15. Case DA et al (2012) AMBER12. University of California, San Francisco

    Google Scholar 

  16. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  17. Hess B, Kutzner C, van Der Spoel D, Lindahl E (2005) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comp 4:435–447

    Article  Google Scholar 

  18. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  19. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  21. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  22. Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  23. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  24. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  25. Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  26. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  27. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  28. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  29. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618

    Article  CAS  Google Scholar 

  30. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) A parallelized integral-direct second-order Møller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theor Chem Accounts 112:442–452

    Article  CAS  Google Scholar 

  31. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396:473–479

    Article  CAS  Google Scholar 

  32. Mochizuki Y, Yamashita K, Nakano T, Okiyama T, Fukuzawa K, Taguchi N, Tanaka S (2011) Higher-order correlated calculations based on fragment molecular orbital scheme. Theor Chem Accounts 130:515–530

    Article  CAS  Google Scholar 

  33. Fukuzawa K, Nakano T, Kato A, Mochizuki Y, Tanaka S (2007) Applications of the fragment molecular orbital method for bio-macromolecules. J Comput Chem 6:185–198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kurita.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anan, R., Nakamura, T., Shimamura, K. et al. Change in binding states between catabolite activating protein and DNA induced by ligand-binding: molecular dynamics and ab initio fragment molecular orbital calculations. J Mol Model 25, 192 (2019). https://doi.org/10.1007/s00894-019-4087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4087-3

Keywords

Navigation