Experimental and molecular modeling study of a novel arylsulfonamide chalcone

  • Vitor S. DuarteEmail author
  • Giulio D. C. D’Oliveira
  • Jean M. F. Custodio
  • Solemar S. Oliveira
  • Caridad Noda Perez
  • Hamilton B. NapolitanoEmail author
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


Chalcones have been reported to present biological activities that are potentialized when a sulfonamide group is attached. A comprehensive structural study was performed for arylsulfonamide chalcone N-(2-(3–4-methoxyphenyl-propanoyl)-phenyl)-benzene-sulfonamide in order to describe its supramolecular arrangement and its physicochemical properties. The molecular packing arrangement was described by X-ray diffraction and Hirshfeld surfaces (HS). Theoretical calculations were performed using density functional theory (DFT), molecular electrostatic potential (MEP) mapping, ab initio Car-Parrinelo molecular dynamics (CPMD) and the quantum theory of atoms in molecules (QTAIM). The solid-state arrangement is stabilized by C– H⋯O and C–H⋯π interactions observed on HS and MEP map. The topological analysis was evaluated by QTAIM.


Arylsulfonamide chalcone Hirshfeld surfaces CPMD DFT 



The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support. Theoretical calculations were performed in the High-Performance Computing Center of Universidade Estadual de Goiás (UEG).

Supplementary material

894_2019_4082_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1171 kb)


  1. 1.
    Aitipamula S, Vangala VR (2006) X-Ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. J Indian Inst Sci 97.
  2. 2.
    Atwood JL, Gokel GW, Barbour LJ (eds) (2017) Comprehensive supramolecular chemistry, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Cacialli F, Samorì P, Silva C (2004) Supramolecular architectures. Mater Today 7:24–32. CrossRefGoogle Scholar
  4. 4.
    Blass BE (2015) Basic principles of drug discovery and development, 1st edn. Academic, New YorkGoogle Scholar
  5. 5.
    Viegas-Junior C, Danuello A, da Silva Bolzani V et al (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852. CrossRefPubMedGoogle Scholar
  6. 6.
    Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137. CrossRefPubMedGoogle Scholar
  7. 7.
    Zhuang C, Zhang W, Sheng C et al (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chavan BB, Gadekar AS, Mehta PP et al (2016) Synthesis and medicinal significance of chalcones—a review. Asian J Biomed Pharm Sci 2015(6):1–7Google Scholar
  9. 9.
    Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85:758–777. CrossRefPubMedGoogle Scholar
  10. 10.
    Wang HM, Zhang L, Liu J et al (2015) Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur J Med Chem 92:439–448. CrossRefPubMedGoogle Scholar
  11. 11.
    Sivakumar PM, Prabhawathi V, Doble M (2010) Antibacterial activity and QSAR of chalcones against biofilm-producing bacteria isolated from marine waters. SAR QSAR Environ Res 21:247–263. CrossRefPubMedGoogle Scholar
  12. 12.
    Patil CB, Mahajan SK, Katti SA (2009) Chalcone: aversatile molecule. J Pharm Sci Res 1:11–22. CrossRefGoogle Scholar
  13. 13.
    Chimenti F, Fioravanti R, Bolasco A et al (2009) Chalcones: a valid scaffold for monoamine oxidases inhibitors. J Med Chem 52:2818–2824. CrossRefPubMedGoogle Scholar
  14. 14.
    Engelbrecht I, Petzer JP, Petzer A (2018) Nitrocatechol derivatives of chalcone as inhibitors of monoamine oxidase and catechol-O-methyltransferase. Cent Nerv Syst Agents Med Chem 18:115–127. CrossRefPubMedGoogle Scholar
  15. 15.
    Rampa A, Montanari S, Pruccoli L et al (2017) Chalcone-based carbamates for Alzheimer’s disease treatment. Future Med Chem 9:749–764. CrossRefPubMedGoogle Scholar
  16. 16.
    Rampa A, Bartolini M, Pruccoli L et al (2018) Exploiting the chalcone scaffold to develop multifunctional agents for Alzheimer’s disease. Molecules 23:1902. CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rybka M, Mercader AG, Castro EA (2014) Predictive QSAR study of chalcone derivatives cytotoxicity activity against HT-29 human colon adenocarcinoma cell lines. Chemom Intell Lab Syst 132:18–29. CrossRefGoogle Scholar
  18. 18.
    Seo WD, Kim JH, Kang JE et al (2005) Sulfonamide chalcone as a new class of α-glucosidase inhibitors. Bioorganic Med Chem Lett 15:5514–5516. CrossRefGoogle Scholar
  19. 19.
    Seo WD, Ryu YB, Curtis-Long MJ et al (2010) Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur J Med Chem 45:2010–2017. CrossRefPubMedGoogle Scholar
  20. 20.
    De Castro MRC, Aragão ÂQ, Da Silva CC et al (2016) Conformational variability in sulfonamide chalcone hybrids: crystal structure and cytotoxicity. J Braz Chem Soc 27:884–898. CrossRefGoogle Scholar
  21. 21.
    Remko M, Kožíšek J, Semanová J, Gregáň F (2010) Synthesis, crystal and molecular structure of two biologically active aromatic sulfonamides and their hydrochloride salts. J Mol Struct 973:18–26. CrossRefGoogle Scholar
  22. 22.
    Domínguez JN, León C, Rodrigues J et al (2005) Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco 60:307–311. CrossRefPubMedGoogle Scholar
  23. 23.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci 60:627–668. CrossRefGoogle Scholar
  24. 24.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. CrossRefGoogle Scholar
  25. 25.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun:3814.
  26. 26.
    Pereira DH, La PFA, Santiago RT et al (2016) New perspectives on the role of frontier molecular orbitals in the study of chemical reactivity: a review. Rev Virtual Química 8:425–453. CrossRefGoogle Scholar
  27. 27.
    Gilman JJ (1997) Chemical and physical “hardness”. Mater Res Innov 1:71–76. CrossRefGoogle Scholar
  28. 28.
    Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular surface. 3959–3961.
  29. 29.
    Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. CrossRefGoogle Scholar
  30. 30.
    Bader RFW (1989) Atoms in molecules in external fields. J Chem Phys 91:6989. CrossRefGoogle Scholar
  31. 31.
    Bader RFW (2005) The quantum mechanical basis of conceptual chemistry. Monatsh Chem 136:819–854. CrossRefGoogle Scholar
  32. 32.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. CrossRefGoogle Scholar
  33. 33.
    Kim JH, Ryu W, Shim H, Park H (2009) Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives. 701:2475–2479.
  34. 34.
    Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838. CrossRefGoogle Scholar
  35. 35.
    Dolomanov O V, Bourhis LJ, Gildea RJ, et al (2009) OLEX2 : a complete structure solution , refinement and analysis program. J Appl Crystal 42:339–341.
  36. 36.
    Sheldrick GM (1990) SHELXS: Program for the solution of crystal structures. University of Göttingen, GöttingenGoogle Scholar
  37. 37.
    Muller P, Herbst-Irmer R, Spek AL et al (2006) Crystal structure refinement—a crystallographer’s guide to SHELXL, 1st edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  38. 38.
    Sheldrick GM (2014) Crystal structure refinement with SHELXL. Acta Crystallogr C C71: 3–8 .
  39. 39.
    Macrae CF, Edgington PR, McCabe P et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457. CrossRefGoogle Scholar
  40. 40.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. CrossRefGoogle Scholar
  41. 41.
    Mckinnon JJ, Mitchell AS, Spackman MA (1998) Visualising intermolecular interactions in crystals: naphthalene vs. terephthalic acid. Chem Commun 1998:2071–2072.
  42. 42.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. CrossRefGoogle Scholar
  43. 43.
    Turner MJ, McKinnon JJ, Jayatilaka D, Spackman MA (2011) Visualisation and characterisation of voids in crystalline materials. CrystEngComm 13:1804–1813. CrossRefGoogle Scholar
  44. 44.
    Dalal J, Sinha N, Yadav H, Kumar B (2015) Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal. RSC Adv 5:57735–57748. CrossRefGoogle Scholar
  45. 45.
    Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392. CrossRefGoogle Scholar
  46. 46.
    Wolff SK, Grimwood DJ, McKinnon JJ, et al (2012) Crystal Explorer 3.0. University of Western Australia, PerthGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CTGoogle Scholar
  48. 48.
    Becke AD (1993) Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648.
  49. 49.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. CrossRefGoogle Scholar
  50. 50.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648. CrossRefGoogle Scholar
  51. 51.
    Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452
  52. 52.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474. CrossRefPubMedGoogle Scholar
  53. 53.
    CPMD version 3.17.1: Copyright IBM (2012)
  54. 54.
    Santin LG, Toledo EM, Carvalho-Silva VH et al (2016) Methanol solvation effect on the proton rearrangement of curcumin’s enol forms: an ab initio molecular dynamics and electronic structure viewpoint. J Phys Chem C 120:19923–19931. CrossRefGoogle Scholar
  55. 55.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefPubMedGoogle Scholar
  56. 56.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. CrossRefGoogle Scholar
  57. 57.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  58. 58.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643. CrossRefGoogle Scholar
  59. 59.
    Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  60. 60.
    Nosé S (2002) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 100:191–198. CrossRefGoogle Scholar
  61. 61.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. CrossRefGoogle Scholar
  62. 62.
    Oliveira BG, Araújo RCMU, Ramos MN (2010) A Topologia molecular qtaim e a descrição mecânico- quântica de ligações de hidrogênio e ligações de di-hidrogênio. Quim Nova 33:1155–1162. CrossRefGoogle Scholar
  63. 63.
    Galdino B, Oliveira D, De CR et al (2009). Uma comprovação químico-quântica sobre a formação de ligações de hidrogênio e interações secundárias em sistemas heterocíclicos intermoleculares Introdução 1:167–182Google Scholar
  64. 64.
    Gatti C, Saunders VR, Roetti C (1994) Crystal field effects on the topological properties of the electron density in molecular crystals: the case of urea. J Chem Phys 101:10686–10696. CrossRefGoogle Scholar
  65. 65.
    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. CrossRefGoogle Scholar
  66. 66.
    Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878Google Scholar
  67. 67.
    Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144. CrossRefPubMedGoogle Scholar
  68. 68.
    Cepa MM, Tavares da Silva EJ, Correia da Silva G et al (2005) Structure–activity relationships of new A,D-ring modified steroids as aromatase Inhibitors: design, synthesis, and biological activity evaluation. J Med Chem 48:6379–6385.
  69. 69.
    Sulpizio C, Roller A, Giester G, Rompel A (2016) Synthesis, structure, and antioxidant activity of methoxy- and hydroxyl-substituted 2′-aminochalcones. Monatsh Chem 147:1747–1757.
  70. 70.
    Szczesio M, Gołka J, Korona-Głowniak I (2018). Planarity of heteroaryldithiocarbazic acid derivatives showing tuberculostatic activity: structure–activity relationships research papers. 2:400–405. CrossRefGoogle Scholar
  71. 71.
    Szczesio M, Korona-Glowniak I, Gobis K (2018) Planarity of benzoyldithiocarbazate tuberculostatics. V. Antibacterial activities of diesters of benzoyldithiocarbazic acid. J Mol Struct 1167:127–133.
  72. 72.
    Tu B, Liu Z, Chen Z et al (2015) Understanding the structure–activity relationship between quercetin and naringenin : in vitro. RSC Adv 5:106171–106181. CrossRefGoogle Scholar
  73. 73.
    Galabov B, Nikolova V, Ilieva S (2013) Does the molecular electrostatic potential reflect the effects of substituents in aromatic systems? Chmistry 19:5149–5155.
  74. 74.
    Koca M, Yildirim G, Kirilmis C, Karaboga F (2012) Density functional theory study on the identification of Pd(Me-Xanthate)2. Arab J Sci Eng 37:1283–1291. CrossRefGoogle Scholar
  75. 75.
    Scrocco E, Tomasi J (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quantum Chem 11:115–193.
  76. 76.
    Demircioǧlu Z, Albayrak Ç, Büyükgüngör O (2014) Theoretical and experimental investigation of (E)-2-([3,4-dimethylphenyl) imino]methyl)-3-methoxyphenol: enol-keto tautomerism, spectroscopic properties, NLO, NBO and NPA analysis. J Mol Struct 1065–1066:210–222.
  77. 77.
    Kılıç-Cıkla I, Güveli Ş, Yavuz M et al (2016) 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: crystallographic, spectroscopic (IR, NMR and UV) and DFT studies. Polyhedron 105:104–114. CrossRefGoogle Scholar
  78. 78.
    Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer.
  79. 79.
    Silva López C, Olalla ], Faza N, et al. Ellipticity: a convenient tool to characterize electrocyclic reactions. Chemistry 11:1734–1738.
  80. 80.
    Cremer D, Kraka E, Nguyen-Dang TT et al (1983) Description of homoaromaticity in terms of electron distributions. J Am Chem Soc 105:5069–5075. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Química Teórica e Estrutural de AnápolisUniversidade Estadual de GoiásAnápolisBrazil
  2. 2.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Laboratório de Novos MateriaisCentro Universitário de AnápolisAnápolisBrazil

Personalised recommendations