Skip to main content
Log in

Thermal decomposition of syn- and anti-dihydropyrenes; functional group-dependent decomposition pathway

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Syn and anti dihydropyrene (DHP) are excellent thermochromes, and therefore extensively studied for their thermochromic and photochromic properties, respectively. However, they suffer from thermal decomposition due to thermal instability. In this study, we thoroughly investigated pathways for the thermal decomposition of anti- and syn- dihydropyrenes through computational methods. The decomposition pathways include sigmatropic shift and hemolytic and heterolytic (cationic and anionic) cleavages. The decomposition pathway is influenced not only by the dihydropyrene (syn- or anti-) but also by the functional groups present. For anti-dihydropyrenes, sigmatropic shift is the most plausible pathways for CN and CHO internal groups. The cascade of sigmatropic shifts is followed by elimination to deliver substituted pyrenes. For CH3- and H- dihydropyrenes, hemolytic cleavage of the internal groups is the most plausible pathway for decomposition to pyrenes. The pathway is changed to heterolytic cleavage when the internal groups on the dihydropyrenes are Cl, Br, and SMe. Comparison of the activation barriers for syn (30.18 kcal mol−1) and anti (32.10 kcal mol−1) dimethyldihydropyrenes for radical pathway reveal that decomposition of syn- DHP is more facile over anti-, which is consistent with the experimental observation. The decomposition pathway for syn-dihydropyrene is also hemolytic in cleavage when the internal groups are methyl and hydrogen. Syn-dihydropyrenes (symmetrical or unsymmetrical) bearing CN group do not follow sigmatropic shift, quite contrary to the anti-dihydropyrene. The lack of tendency of the syn-dihydropyrene for sigmatropic shift is rationalized on the planarity of the scaffold. The results of the theoretical study are consistent with the experimental observations. The results here help in understanding the behavior of substituents on the dihydropyrene scaffold, which will be useful in designing new molecules with improved thermal stabilities.

Functional group dependent decomposition pathways of dihydropyrenes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mitchell RH, Iyer VS, Mahadevan R et al (1996). J Org Chem 61(15):5116–5120

    Article  CAS  Google Scholar 

  2. Mitchell RH, Ward TR, Chen Y et al (2003). J Am Chem Soc 125(10):2974–2988

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell RH, Boekelheide V (1974). J Am Chem Soc 96(5):1547–1557

    Article  CAS  Google Scholar 

  4. Saima B, Khan A, Nisa RU et al (2016). J Mol Model 22(4):81–89

    Article  PubMed  Google Scholar 

  5. Mitchell RH, Boekelheide V (1970). J Chem Soc D Chem Commun 92(11):3510–3512

    Article  CAS  Google Scholar 

  6. Mitchell RH, Chaudhary M, Kamada T et al (1986). Tetrahedron 42(6):1741–1744

    Article  CAS  Google Scholar 

  7. Ayub K, Zhang R, Robinson SG et al (2008). J Org Chem 73(2):451–456

    Article  CAS  PubMed  Google Scholar 

  8. Ayub K, Li R, Bohne C et al (2011). J Am Chem Soc 133(11):4040–4045

    Article  CAS  PubMed  Google Scholar 

  9. Khan N, Sheikh NS, Khan AF et al (2015). J Mol Model 21(6):148–159

    Article  PubMed  Google Scholar 

  10. Ayub K, Mitchell RH (2014). J Org Chem 79(2):664–678

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell RH, Boekelheide V (1970). J Am Chem Soc 92(11):3510–3512

    Article  CAS  Google Scholar 

  12. Mitchell RH, Bodwell GJ, Vinod TK, Weerawarna KS (1988). Tetrahedron Lett 29(27):3287–3290

    Article  CAS  Google Scholar 

  13. Ayub K (2008) PhD thesis, University of Victoria

  14. Sinha S, Raj A (2016). Phys Chem Chem Phys 18:8120–8131

    Article  CAS  PubMed  Google Scholar 

  15. Karmakar S, Datta A (2017). J Org Chem 82:1558–1566

    Article  CAS  PubMed  Google Scholar 

  16. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  17. Becke AD (1993). J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  19. Williams RV, Edwards WD, Mitchell RH, Robinson SG (2005). J Am Chem Soc 127(46):16207–16214

    Article  CAS  PubMed  Google Scholar 

  20. Saima B, Khan N, Al-Faiyz YSS et al (2019). J Mol Graph Model 88:261–272

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell RH, Blunden R, Hollett G et al (2005). J Org Chem 70(2):675–680

    Article  CAS  PubMed  Google Scholar 

  22. Leach AG, Catak S, Houk KN (2002). Chem Eur J 8(6):1290–1299

    Article  CAS  PubMed  Google Scholar 

  23. Babar A, Khalid H, Ayub K et al (2014). J Mol Struct 1072:221–227

    Article  CAS  Google Scholar 

  24. Fazl-i-Sattar, Ullah Z, Ata-ur-Rahman et al (2015). Spectrochim Acta A Mol Biomol Spectrosc 141:71–79

    Article  CAS  PubMed  Google Scholar 

  25. Specowius V, Bendrath F, Winterberg M et al (2012). Adv Synth Catal 354(6):1163–1169

    Article  CAS  Google Scholar 

  26. Iaroshenko VO, Ostrovskyi D, Ayub K et al (2013). Adv Synth Catal 355(2–3):576–588

    CAS  Google Scholar 

  27. Jeilani YA, Nguyen HT, Cardelino BH, Nguyen MT (2014). Chem Phys Lett 598:58–64

    Article  CAS  Google Scholar 

  28. Gutierrez O, Strick BF, Thomson RJ, Tantillo DJ (2013). Chem Sci 4:3997–4003

    Article  CAS  Google Scholar 

  29. Painter PP, Siebert MR, Tantillo DJ (2015). J Org Chem 80:11699–11705

    Article  CAS  PubMed  Google Scholar 

  30. Koch R, Finnerty JJ, Murali S, Wentrup C (2012). J Org Chem 77:1749–1759

    Article  CAS  PubMed  Google Scholar 

  31. Hou S, Li X, Xu J (2014). Org Biomol Chem 12:4952–4963

    Article  CAS  PubMed  Google Scholar 

  32. Nisa RU, Hashmi MA, Sajjad S et al (2016). J Organomet Chem 808:78–86

    Article  CAS  Google Scholar 

  33. Mahmood T, Kosar N, Ayub K (2017). Tetrahedron 73:3521–3528

    Article  CAS  Google Scholar 

  34. Narayanan A, Nirmalchandar A, Paknia F et al (2018). Top Catal 61:652–663

    Article  CAS  Google Scholar 

  35. Gomes RFA, Coelho JAS, Afonso CAM (2019). ChemSusChem 12:420–425

    Article  CAS  PubMed  Google Scholar 

  36. Campos RB, Tantillo DJ (2018). J Org Chem 83:1073–1076

    Article  CAS  PubMed  Google Scholar 

  37. Lebœuf D, Gandon V, Ciesielski J, Frontier AJ (2012). J Am Chem Soc 134:6296–6308

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kudernac T, Kobayashi T, Uyama A et al (2013). J Phys Chem A 117:8222–8229

    Article  CAS  PubMed  Google Scholar 

  39. Fukazawa A, Oshima H, Shiota Y et al (2013). J Am Chem Soc 135:1731–1734

    Article  CAS  PubMed  Google Scholar 

  40. Boekelheide V, Sturm E (1969). J Am Chem Soc 91(4):902–908

    Article  CAS  Google Scholar 

  41. Boekelheide V, Hylton TA (1970). J Am Chem Soc 92(12):3669–3675

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Higher Education Commission of Pakistan and COMSATS University, Abbottabad Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Ethics declarations

The author from the King Khalid University is thankful to Deanship of Scientific Research at King Khalid University for funding the work through Research Group Project under grant number (R. G. P.1/165/40).

Ethical statements

1. The manuscript has not been submitted to more than one journal for simultaneous consideration.

2. The manuscript has not been published previously (partly or in full).

3. A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

4. No data have been fabricated or manipulated (including images) to support our conclusions.

5. No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other’s work if quoted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saima, B., Wang, Y.A., Hussain, R. et al. Thermal decomposition of syn- and anti-dihydropyrenes; functional group-dependent decomposition pathway. J Mol Model 25, 215 (2019). https://doi.org/10.1007/s00894-019-4052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4052-1

Keywords

Navigation