Embedded-atom method interatomic potential for boron nanostructures


Parameters of embedded-atom method interatomic potential for boron are presented in this paper. The potential parameters were determined by means of ab initio data for boron cluster B20, triangular boron sheet, and body-centered cubic structure. The potential has been tested against basic properties of various boron structures. They are face-centered cubic, diamond-like, body-centered tetragonal, icosahedron B12 and icosahedral chain structures. One can conclude that the proposed potential provides a reasonable representation of the interatomic interaction in boron nanostructures, and it is intended for use in large-scale molecular dynamics simulations of boron nanomaterials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Tian JF, Hui C, Bao LH, Li C, Tian YA, Ding H, Shen CM, Gao HJ (2009) Patterned boron nanowires and field emission properties. Appl Phys Lett 94:083101

    Article  Google Scholar 

  2. 2.

    Tian JF, Cai JM, Hui C, Zhang CD, Bao LH, Gao M, Shen CM, Gao HJ (2008) Boron nanowires for flexible electronics. Appl Phys Lett 93:122105

    Article  Google Scholar 

  3. 3.

    Liu F, Tian J, Bao L, Yang T, Shen C, Lai X, Xiao Z, Xie W, Deng S, Chen J, She J, Xu N, Gao H (2008) Fabrication of vertically aligned single-crystalline boron nanowire arrays and investigation of their field-emission behavior. Adv Mater 20:2609–2615

    CAS  Article  Google Scholar 

  4. 4.

    Rohani P, Kim S, Swihart MT (2016) Boron nanoparticles for room-temperature hydrogen generation from water. Adv Energy Mater 6:1502550

    Article  Google Scholar 

  5. 5.

    Kunstmann J, Bezugly V, Rabbel H, Rümmeli MH, Cuniberti G (2014) Unveiling the atomic structure of single-wall boron nanotubes. Adv Funct Mater 24:4127–4134

    CAS  Article  Google Scholar 

  6. 6.

    Takahiro K (2017) Recent progress in boron nanomaterials. Sci Technol Adv Mater 18:780–804

    Article  Google Scholar 

  7. 7.

    Song J, Wu J, Huang Y, Hwang KC, Jiang H (2008) Stiffness and thickness of boron-nitride nanotubes. J Nanosci Nanotechnol 8:3774–3780

    CAS  Article  Google Scholar 

  8. 8.

    Kınacı A, Haskins JB, Sevik C, Çağın T (2012) Thermal conductivity of BN-C nanostructures. Phys Rev B 86:115410

    Article  Google Scholar 

  9. 9.

    Daw MS, Lawson JW, Bauschlicher Jr CW (2011) Interatomic potentials for zirconium diboride and hafnium diboride. Comput Mater Sci 50:2828–2835

    CAS  Article  Google Scholar 

  10. 10.

    Pokatashkin P, Kuksin A, Yanilkin A (2015) Angular dependent potential for α-boron and large-scale molecular dynamics simulations. Model Simul Mater Sci Eng 23:045014

    Article  Google Scholar 

  11. 11.

    Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50:1285

    CAS  Article  Google Scholar 

  12. 12.

    Daw MS, Baskes MI (1983) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443

    Article  Google Scholar 

  13. 13.

    Zalizniak VE, Zolotov OA (2015) Towards a universal embedded-atom method interatomic potential for pure metals. J Sib Fed Univ Math Phys 8:230–240. Available from: http://elib.sfu-kras.ru/handle/2311/16811

    Article  Google Scholar 

  14. 14.

    Atiş M, Özdoğan C, Güvenç ZB (2009) Density functional study of physical and chemical properties of nano size boron clusters: Bn (n = 13-20). Chin J Chem Phys 22:380–388

    Article  Google Scholar 

  15. 15.

    Lau KC, Pandey R (2007) Stability and electronic properties of atomistically-engineered 2D boron sheets. J Phys Chem C 111:2906–2912

    CAS  Article  Google Scholar 

  16. 16.

    Curtarolo S et al (2012) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227–235

    CAS  Article  Google Scholar 

  17. 17.

    Zalizniak VE, Zolotov OA (2017) Efficient embedded-atom method interatomic potential for graphite and carbon nanostructures. Mol Simul 43:1480–1484

    CAS  Article  Google Scholar 

  18. 18.

    Niu J, Rao BK, Jena P (1997) Atomic and electronic structures of neutral and charged boron and boron-rich clusters. J Chem Phys 107:132–140

    CAS  Article  Google Scholar 

  19. 19.

    Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804

    Article  Google Scholar 

  20. 20.

    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866

    CAS  Article  Google Scholar 

  21. 21.

    Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) Thermochemistry and electronic structure of small boron clusters (Bn, n=5-13) and their anions. J Phys Chem A 114:994–1007

    CAS  Article  Google Scholar 

  22. 22.

    Kah CB, Yu M, Tandy P, Jayanthi CS, Wu SY (2015) Low-dimensional boron structures based on icosahedron B12. Nanotechnology 26:405701

    CAS  Article  Google Scholar 

  23. 23.

    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    CAS  Article  Google Scholar 

  24. 24.

    Astrikov DY, Kuzmin DA, Panasyuk AI (2014) Simulation of a scheduling system of the distributed high-performance computing system. Proc Russ High School Acad Sci 23–24:34–41

    Google Scholar 

Download references


Boron structures drawings were produced using the 3D visualization program VESTA [23]. We gratefully acknowledge The High Performance Computing Centre of the Siberian Federal University for providing the computational facility [24].

Author information



Corresponding author

Correspondence to V. E. Zalizniak.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zalizniak, V.E., Zolotov, O.A. Embedded-atom method interatomic potential for boron nanostructures. J Mol Model 25, 165 (2019). https://doi.org/10.1007/s00894-019-4049-9

Download citation


  • Interatomic potential
  • Embedded-atom method
  • Boron