Skip to main content
Log in

Density functional theory evaluation of pristine and BN-doped biphenylene nanosheets to detect HCN

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrogen cyanide (HCN) adsorption on pristine and B–N doped biphenylene nanosheets was investigated by means of density functional theory calculations. According to biphenylene geometry, all distinct possible B–N substitutions were designed. Adsorption energy and electronic structure at the level of M062X/6-31 g (d,p) theory were computed for all possible geometries. Our results reveal that pristine biphenylene nanosheet is not a suitable candidate for HCN detection. Also, for B–N doping, the sensitivity of the nanosheet depends on the B–N doped configuration. One of these derivative structures shows higher sensitivity to HCN adsorption due to the greater change in electronic properties. Moreover, atoms in molecules and natural bond orbital analysis were performed to obtain more in-depth knowledge about the adsorption mechanism. The range of energy for interaction between HCN and the nanosheets belongs to physical adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a,b

Similar content being viewed by others

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Cao M-S, Wang X-X, Cao W-Q, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3:6589–6599

    Article  CAS  Google Scholar 

  3. Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH, Jang HW (2015) Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9:10453–10460

    Article  CAS  Google Scholar 

  4. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696

    Article  CAS  Google Scholar 

  5. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  6. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  CAS  Google Scholar 

  7. Sheng X-L, Cui H-J, Ye F, Yan Q-B, Zheng Q-R, Su G (2012) Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage. J Appl Phys 112:074315

    Article  Google Scholar 

  8. Liu Y, Wang G, Huang Q, Guo L, Chen X (2012) Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys Rev Lett 108:225505

    Article  Google Scholar 

  9. Hudspeth MA, Whitman BW, Barone V, Peralta JE (2010) Electronic properties of the biphenylene sheet and its one-dimensional derivatives. ACS Nano 4:4565–4570

    Article  CAS  Google Scholar 

  10. Denis PA (2014) Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets. The J Phys Chem C 118:24976–24982. https://doi.org/10.1021/jp5069895

    Article  CAS  Google Scholar 

  11. Ferguson D, Searles DJ, Hankel M (2017) Biphenylene and phagraphene as lithium ion battery anode materials. ACS Appl Mater Interfaces 9:20577–20584

    Article  CAS  Google Scholar 

  12. Cummings T (2004) The treatment of cyanide poisoning. Occup Med 54:82–85

    Article  CAS  Google Scholar 

  13. Freeman G, Reucroft P (1979) Adsorption of HCN and H2O vapor mixtures by activated and impregnated carbons. Carbon 17:313–316

    Article  CAS  Google Scholar 

  14. Pang J et al (2017) DFT coupled with NEGF study of ultra-sensitive HCN and HNC gases detection and distinct I–V response based on phosphorene. Phys Chem Chem Phys 19:30852–30860

    Article  CAS  Google Scholar 

  15. Habibi-Yangjeh A, Basharnavaz H (2018) Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study. Mol Phys 116:1320–1327

    Article  CAS  Google Scholar 

  16. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2014) Density-functional calculations of HCN adsorption on the pristine and Si-doped graphynes. Struct Chem 25:1–7

    Article  CAS  Google Scholar 

  17. Rad AS, Zardoost MR, Abedini E (2015) First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations. J Mol Model 21:273

    Article  Google Scholar 

  18. Tabtimsai C, Somtua T, Motongsri T, Wanno B (2017) A DFT study of H2CO and HCN adsorptions on 3d, 4d, and 5d transition metal-doped graphene nanosheets. Struct Chem 29:147–157. https://doi.org/10.1007/s11224-017-1013-0

    Article  CAS  Google Scholar 

  19. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  Google Scholar 

  20. Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J Phys Chem C 117:2427–2432

    Article  CAS  Google Scholar 

  21. Zhao M, Yang F, Xue Y, Xiao D, Guo Y (2014) Adsorption of HCN on reduced graphene oxides: a first–principles study. J Mol Model 20:2214

    Article  Google Scholar 

  22. Walia GK, Randhawa DKK (2018) Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons. J Mol Model 24:242

    Article  Google Scholar 

  23. Schmidt MW et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  24. Lazar P, Fe K, Jurečka P, Ms K, Otyepková E, Kr Š, Otyepka M (2013) Adsorption of small organic molecules on graphene. J Am Chem Soc 135:6372–6377

    Article  CAS  Google Scholar 

  25. Bahrami A, Qarai MB, Hadipour NL (2017) The electronic and structural responses of B12N12 nanocage toward the adsorption of some nonpolar X2 molecules: X=(Li, Be, B, N, O, F, Cl, Br, I): A DFT approach. Comput Theor Chem 1108:63–69

    Article  CAS  Google Scholar 

  26. Bader RF (1998) Atoms in molecules. In: Schleyer P v (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 64–86.

  27. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-Program for atoms in molecules. J Comput Chem 23:1489–1494

    Article  Google Scholar 

  28. Politzer P, Murray JS, Clark T, Resnati G (2017) The sigma-hole revisited. Phys Chem Chem Phys 19:32166–32178. https://doi.org/10.1039/c7cp06793c

    Article  CAS  PubMed  Google Scholar 

  29. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) An unusual feature of end-substituted model carbon (6,0) nanotubes. J Mol Model 11:258–264. https://doi.org/10.1007/s00894-005-0265-6

    Article  CAS  PubMed  Google Scholar 

  30. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett. 3:21–28

    Article  CAS  Google Scholar 

  31. Supronowicz B, Mavrandonakis A, Heine T (2013) Interaction of small gases with the unsaturated metal centers of the HKUST-1 metal organic framework. J Phys Chem C 117:14570–14578

    Article  CAS  Google Scholar 

  32. Szczęśniak B, Choma J, Jaroniec M (2017) Gas adsorption properties of graphene-based materials. Adv Colloid Interfac 243:46–59

    Article  Google Scholar 

  33. Muller G, Hackner A, Beer S, Gobel J (2016) Solid-state gas sensors: sensor system challenges in the civil security domain. Materials (Basel) 9(1): pii: E65. https://doi.org/10.3390/ma9010065

    Article  Google Scholar 

  34. Jia Y, Xu G, Wang X, Press NDI (2017) Low-dimensional materials and applications. De Gruyter, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidin Bahrami.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfandiarpour, R., Hosseini, M.R., Hadipour, N.L. et al. Density functional theory evaluation of pristine and BN-doped biphenylene nanosheets to detect HCN. J Mol Model 25, 163 (2019). https://doi.org/10.1007/s00894-019-4048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4048-x

Keywords

Navigation