Advertisement

BTEX adsorption on TiO2 anatase and rutile surfaces: DFT functionals

  • Marcos dos Reis Vargas
  • Elton A. S. de Castro
  • José R. dos S. Politi
  • Ricardo Gargano
  • João B. L. MartinsEmail author
Original Paper
  • 81 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

Benzene, toluene, ethylbenzene, and xylenes are volatile hydrocarbons known as BTEX, which present concerns about environmental problems. Density functional theory (DFT) functionals were used for the BTEX gas phase adsorption on TiO2 (110) of rutile and (101) of anatase surfaces. Dispersion terms have shown the importance to treat weak interactions and were used to study these adsorptions using plane wave DFT calculations. All BTEX molecules have the same trend for the adsorption on rutile and anatase surfaces. The inclusion of dispersion terms has a significant contribution for the interaction energy. Density of states results suggest the hybridization between the d state of pentacoordinated titanium atoms (Ti5C) and carbon p states of benzene. The adsorption energy values indicate an effective interaction between the BTEX and surfaces, mainly due to the aromatic π interaction, which is present in all adsorbates. However, for p-xylene the methyl hydrogen directs the second major influence.

Graphical abstract

Charge difference showing the system with the smallest interaction and the one with the largest interaction

Keywords

Adsorption Plane wave BTEX 

Notes

Acknowledgments

The authors are indebted to the financial support of FAPDF, CNPq, and CAPES and the computational support of CENAPAD/SP and UnB/FINEP Institute of Chemistry Computational Centre.

Supplementary material

894_2019_4027_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)

References

  1. 1.
    Becher R, Hongslo JK, Jantunen MJ, Dybing E (1996) Environmental chemicals relevant for respiratory hypersensitivity: the indoor environment. Toxicol Lett 86:155–162.  https://doi.org/10.1016/0378-4274(96)03685-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Field RA, Goldstone ME, Lester JN, Perry R (1992) The sources and behaviour of tropospheric anthropogenic volatile hydrocarbons. Atmos Environ Part A 26:2983–2996.  https://doi.org/10.1016/0960-1686(92)90290-2 CrossRefGoogle Scholar
  3. 3.
    Bertoni G, Ciuchini C, Pasini A, Tappa R (2002) Monitoring of ambient BTX at Monterotondo (Rome) and indoor-outdoor evaluation in school and domestic sites. J Environ Monit 4:903–909.  https://doi.org/10.1039/B206959H CrossRefPubMedGoogle Scholar
  4. 4.
    Cocheo V, Sacco P, Boaretto C, De Saeger E, Ballesta PP, Skov H, Goelen E, Gonzalez N, Caracena AB (2000) Urban benzene and population exposure. Nature 404:141–142CrossRefGoogle Scholar
  5. 5.
    Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765.  https://doi.org/10.1016/j.envint.2011.01.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Seinfeld JH, Spyros NP (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, HobokenGoogle Scholar
  7. 7.
    Gonçalves NS, Rettori D, Silva GMG, Noda LK (2018) Spectroscopic study of radical cation species formed on sulfated TiO2 upon benzene adsorption. Vib Spectrosc 99:80–85.  https://doi.org/10.1016/j.vibspec.2018.08.012 CrossRefGoogle Scholar
  8. 8.
    Chen MS, Santra AK, Goodman DW (2004) Adsorption of benzene on a Mo(112)-c(2x2)- SiO4 surface. J Phys Chem B 108:17940–17945.  https://doi.org/10.1021/jp047794e CrossRefGoogle Scholar
  9. 9.
    Gomez-Romero P (2001) Hybrid organic-inorganic materials - in search of synergic activity. Adv Mater 13:163–174.  https://doi.org/10.1002/1521-4095(200102)13:3<163::aid-adma163>3.3.co;2-l CrossRefGoogle Scholar
  10. 10.
    Kang H, Lim S, Park N, Chun K-Y, Baik S (2010) Improving the sensitivity of carbon nanotube sensors by benzene functionalization. Sensors Actuators B Chem 147:316–321.  https://doi.org/10.1016/j.snb.2010.03.028 CrossRefGoogle Scholar
  11. 11.
    Tautz FS (2007) Structure and bonding of large aromatic molecules on noble metal surfaces: the example of PTCDA. Prog Surf Sci 82:479–520.  https://doi.org/10.1016/j.progsurf.2007.09.001 CrossRefGoogle Scholar
  12. 12.
    Zhou J, Dag S, Senanayake SD, Hathorn BC, Kalinin SV, Meunier V, Mullins DR, Overbury SH, Baddorf AP (2006) Adsorption, desorption, and dissociation of benzene on TiO2(110) and Pd/TiO2(110): experimental characterization and first-principles calculations. Phys Rev B 74:125318.  https://doi.org/10.1103/PhysRevB.74.125318 CrossRefGoogle Scholar
  13. 13.
    Yu L, Ruan S, Xu X, Zou R, Hu J (2017) One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today 17:79–95.  https://doi.org/10.1016/j.nantod.2017.10.012 CrossRefGoogle Scholar
  14. 14.
    Henderson MA (2013) Photooxidation and Photodesorption in the photochemistry of isobutene on TiO2(110). J Phys Chem C 117:14113–14124.  https://doi.org/10.1021/jp404625c CrossRefGoogle Scholar
  15. 15.
    Jwo C-S, Chang H, Kao M-J, Lin C-H (2007) Photodecomposition of volatile organic compounds using TiO2 nanoparticles. J Nanosci Nanotechnol 7:1947–1952.  https://doi.org/10.1166/jnn.2007.746 CrossRefPubMedGoogle Scholar
  16. 16.
    Tanizaki T, Murakami Y, Hanada Y, Ishikawa S, Suzuki M, Shinohara R (2007) Titanium dioxide (TiO2)-assisted photocatalytic degradation of volatile organic compounds at ppb level. J Health Sci 53:514–519.  https://doi.org/10.1248/jhs.53.514 CrossRefGoogle Scholar
  17. 17.
    Yu K, Huang L, Lou L-L, Chang Y, Dong Y, Wang H, Liu S (2015) Degradation of polycyclic aromatic hydrocarbons in crumb Tyre rubber catalysed by rutile TiO2 under UV irradiation. Environ Technol 36:1008–1015.  https://doi.org/10.1080/09593330.2014.971883 CrossRefPubMedGoogle Scholar
  18. 18.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefPubMedGoogle Scholar
  19. 19.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229.  https://doi.org/10.1016/S0167-5729(02)00100-0 CrossRefGoogle Scholar
  20. 20.
    Fang W, Liu W, Guo X, Lu X, Lu L (2011) Theoretical investigation of CO adsorption on clean and hydroxylated TiO2-B (100) surfaces. J Phys Chem C 115:8622–8629.  https://doi.org/10.1021/jp110825y CrossRefGoogle Scholar
  21. 21.
    Mazheika AS, Bredow T, Matulis VE, Ivashkevich OA (2011) Theoretical study of adsorption of Ag clusters on the anatase TiO2(100) surface. J Phys Chem C 115:17368–17377.  https://doi.org/10.1021/jp200575u CrossRefGoogle Scholar
  22. 22.
    McGill PR, Muir JMR, Idriss H, Soehnel T (2013) Formamide adsorption over the TiO2 (110) surface: a theoretical study. RSC Adv 3:16829–16839.  https://doi.org/10.1039/c3ra41286e CrossRefGoogle Scholar
  23. 23.
    Mutombo P, Balazs N, Majzik Z, Berko A, Chab V (2012) Theoretical study of the adsorption of rhodium on a TiO2(110)-1 x 1 surface. Appl Surf Sci 258:4478–4482.  https://doi.org/10.1016/j.apsusc.2012.01.011 CrossRefGoogle Scholar
  24. 24.
    Nieto-Lopez I, Hernandez-Garcia L, Bonilla-Cruz J, Sanchez M (2014) Theoretical study of absorption of 2,2,6,6-tetramethylpiperidine-1-oxoammonium cation (TEMPO) on TiO2(110) rutile surface. J Mol Model 20:2149.  https://doi.org/10.1007/s00894-014-2149-0
  25. 25.
    Suzuki S, Tsuneda T, Hirao K (2012) A theoretical investigation on photocatalytic oxidation on the TiO2 surface. J Chem Phys 136:104701.  https://doi.org/10.1063/1.3676261 CrossRefGoogle Scholar
  26. 26.
    Wanbayor R, Deak P, Frauenheim T, Ruangpornvisuti V (2011) First principles theoretical study of the hole-assisted conversion of CO to CO2 on the anatase TiO2(101) surface. J Chem Phys 134:104701.  https://doi.org/10.1063/1.3562366 CrossRefPubMedGoogle Scholar
  27. 27.
    Wei Z, Zhang S, Pan Z, Liu Y (2011) Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO2 anatase (1 0 1) surface. Appl Surf Sci 258:1192–1198.  https://doi.org/10.1016/j.apsusc.2011.09.069 CrossRefGoogle Scholar
  28. 28.
    Zhao Z, Li Z, Zou Z (2012) A theoretical study of water adsorption and decomposition on the low-index stoichiometric Anatase TiO2 surfaces. J Phys Chem C 116:7430–7441.  https://doi.org/10.1021/jp212407s CrossRefGoogle Scholar
  29. 29.
    Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176.  https://doi.org/10.1021/cr400625j CrossRefPubMedGoogle Scholar
  30. 30.
    Diebold U (2003) Structure and properties of TiO2 surfaces: a brief review. Appl Phys A Mater Sci Process 76:681–687.  https://doi.org/10.1007/s00339-002-2004-5 CrossRefGoogle Scholar
  31. 31.
    Herman GS, Sievers MR, Gao Y (2000) Structure determination of the two-domain (1 x 4) anatase TiO2(001) surface. Phys Rev Lett 84:3354–3357.  https://doi.org/10.1103/PhysRevLett.84.3354 CrossRefPubMedGoogle Scholar
  32. 32.
    Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409.  https://doi.org/10.1103/PhysRevB.63.155409 CrossRefGoogle Scholar
  33. 33.
    Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P (2004) Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and γ-alumina catalytic supports. J Catal 222:152–166.  https://doi.org/10.1016/j.jcat.2003.10.016 CrossRefGoogle Scholar
  34. 34.
    Labat F, Baranek P, Adamo C (2008) Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an ab initio investigation. J Chem Theory Comput 4:341–352.  https://doi.org/10.1021/ct700221w CrossRefPubMedGoogle Scholar
  35. 35.
    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H (2007) Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations. Theor Chem Accounts 117:565–574.  https://doi.org/10.1007/s00214-006-0189-y CrossRefGoogle Scholar
  36. 36.
    Bennett RA, Stone P, Price NJ, Bowker M (1999) Two (1 x 2) reconstructions of TiO2(110): surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy. Phys Rev Lett 82:3831–3834.  https://doi.org/10.1103/PhysRevLett.82.3831 CrossRefGoogle Scholar
  37. 37.
    Diebold U, Anderson JF, Ng KO, Vanderbilt D (1996) Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys Rev Lett 77:1322–1325.  https://doi.org/10.1103/PhysRevLett.77.1322 CrossRefPubMedGoogle Scholar
  38. 38.
    Hebenstreit W, Ruzycki N, Herman GS, Gao Y, Diebold U (2000) Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys Rev B 62:R16334–R16336.  https://doi.org/10.1103/PhysRevB.62.R16334 CrossRefGoogle Scholar
  39. 39.
    Hengerer R, Bolliger B, Erbudak M, Grätzel M (2000) Structure and stability of the anatase TiO2 (101) and (001) surfaces. Surf Sci 460:162–169  https://doi.org/10.1016/S0039-6028(00)00527-6 CrossRefGoogle Scholar
  40. 40.
    Hird B, Armstrong RA (1997) Ion scattering measurements of rutile TiO2(110)-(1 × 1) surface relaxation. Surf Sci 385:L1023–L1028.  https://doi.org/10.1016/S0039-6028(97)00437-8 CrossRefGoogle Scholar
  41. 41.
    Lindsay R, Wander A, Ernst A, Montanari B, Thornton G, Harrison NM (2005) Revisiting the surface structure of TiO2(110): a quantitative low-energy electron diffraction study. Phys Rev Lett 94:246102.  https://doi.org/10.1103/PhysRevLett.94.246102 CrossRefGoogle Scholar
  42. 42.
    Chuang Y-H, Hong G-B, Chang C-T (2014) Study on particulates and volatile organic compounds removal with TiO2 nonwoven filter prepared by electrospinning. J Air Waste Manage Assoc 64:738–742.  https://doi.org/10.1080/10962247.2014.889614 CrossRefGoogle Scholar
  43. 43.
    Jeong J, Sekiguchi K, Lee W, Sakamoto K (2005) Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. J Photochem Photobiol A Chem 169:279–287.  https://doi.org/10.1016/j.jphotochem.2004.07.014 CrossRefGoogle Scholar
  44. 44.
    Palau J, Colomer M, Penya-Roja JM, Martinez-Soria V (2012) Photodegradation of toluene, m-xylene, and n-butyl acetate and their mixtures over TiO2 catalyst on glass fibers. Ind Eng Chem Res 51:5986–5994.  https://doi.org/10.1021/ie300357x CrossRefGoogle Scholar
  45. 45.
    Zhang F, Zhu X, Ding J, Qi Z, Wang M, Sun S, Bao J, Gao C (2014) Mechanism study of photocatalytic degradation of gaseous toluene on TiO2 with weak-bond adsorption analysis using in situ far infrared spectroscopy. Catal Lett 144:995–1000.  https://doi.org/10.1007/s10562-014-1213-9 CrossRefGoogle Scholar
  46. 46.
    Farias SAS, Longo E, Gargano R, Martins JBL (2013) CO2 adsorption on polar surfaces of ZnO. J Mol Model 19:2069–2078.  https://doi.org/10.1007/s00894-012-1636-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Sorescu DC, Al-Saidi WA, Jordan KD (2011) CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study. J Chem Phys 135:124701.  https://doi.org/10.1063/1.3638181 CrossRefPubMedGoogle Scholar
  48. 48.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561.  https://doi.org/10.1016/0022-3093(95)00355-X CrossRefGoogle Scholar
  49. 49.
    Kresse G, Hafner J (1994) Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269.  https://doi.org/10.1103/PhysRevB.49.14251 CrossRefGoogle Scholar
  50. 50.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces - applications of the generalized approximation for exchange and correlation. Phys Rev B 46:6671–6687.  https://doi.org/10.1103/PhysRevB.46.6671 CrossRefGoogle Scholar
  52. 52.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces - applications of the generalized approximation for exchange and correlation. Phys Rev B 48:4978–4978.  https://doi.org/10.1103/PhysRevB.48.4978.2 CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple. Phys Rev Lett 78:1396–1396.  https://doi.org/10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  55. 55.
    Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123.  https://doi.org/10.1103/PhysRevB.73.195123 CrossRefGoogle Scholar
  56. 56.
    Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  57. 57.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  58. 58.
    Burdett JK, Hughbanks T, Miller GJ, Richardson JW, Smith JV (1987) Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 109:3639–3646.  https://doi.org/10.1021/ja00246a021 CrossRefGoogle Scholar
  59. 59.
    Horn M, Schwerdt C, Meagher EP (1972) Refinement of structure of anatase at several temperatures. Z Krist 136:273–281.  https://doi.org/10.1524/zkri.1972.136.3-4.273 CrossRefGoogle Scholar
  60. 60.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799.  https://doi.org/10.1002/jcc.20495 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hasnip PJ, Refson K, Probert MIJ, Yates JR, Clark SJ, Pickard CJ (2014) Density functional theory in the solid state. Philos Transact A Math Phys Eng Sci 372:20130270.  https://doi.org/10.1098/rsta.2013.0270 CrossRefGoogle Scholar
  62. 62.
    Bates SP, Kresse G, Gillan MJ (1997) A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations. Surf Sci 385:386–394.  https://doi.org/10.1016/S0039-6028(97)00265-3 CrossRefGoogle Scholar
  63. 63.
    Lindan PJD, Harrison NM, Gillan MJ, White JA (1997) First-principles spin-polarized calculations on the reduced and reconstructed TiO2 (110) surface. Phys Rev B 55:15919–15927.  https://doi.org/10.1103/PhysRevB.55.15919 CrossRefGoogle Scholar
  64. 64.
    Liu H, Wang X, Pan C, Liew KM (2012) First-principles study of formaldehyde adsorption on TiO2 rutile (110) and Anatase (001) surfaces. J Phys Chem C 116:8044–8053.  https://doi.org/10.1021/jp210465u CrossRefGoogle Scholar
  65. 65.
    Ma J-G, Zhang C-R, Gong J-J, Yang B, Zhang H-M, Wang W, Wu Y-Z, Chen Y-H, Chen H-S (2014) The adsorption of alpha-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: a density functional theory study. J Chem Phys 141:234705.  https://doi.org/10.1063/1.4903790 CrossRefPubMedGoogle Scholar
  66. 66.
    Neto ARR, Alves HWL (2010) Adsorption of benzene over the rutile TiO2 (110) surfaces: a theoretical study. Phys Status Solidi C 7:308–311.  https://doi.org/10.1002/pssc.200982434 CrossRefGoogle Scholar
  67. 67.
    Liu W, Carrasco J, Santra B, Michaelides A, Scheffler M, Tkatchenko A (2012) Benzene adsorbed on metals: concerted effect of covalency and van der Waals bonding. Phys Rev B 86:245405.  https://doi.org/10.1103/PhysRevB.86.245405 CrossRefGoogle Scholar
  68. 68.
    Nagao M, Suda Y (1989) Adsorption of benzene, toluene, and chlorobenzene on titanium dioxide. Langmuir 5:42–47.  https://doi.org/10.1021/la00085a009 CrossRefGoogle Scholar
  69. 69.
    Reiss S, Krumm H, Niklewski A, Staemmler V, Woll C (2002) The adsorption of acenes on rutile TiO2(110): a multi-technique investigation. J Chem Phys 116:7704–7713.  https://doi.org/10.1063/1.1460855 CrossRefGoogle Scholar
  70. 70.
    Mabrook M, Hawkins P (2002) Benzene sensing using thin films of titanium dioxide operating at room temperature. Sensors 2:374–382.  https://doi.org/10.3390/s20900374 CrossRefGoogle Scholar
  71. 71.
    Carrasco J, Liu W, Michaelides A, Tkatchenko A (2014) Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. J Chem Phys 140:084704.  https://doi.org/10.1063/1.4866175 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of BrasiliaBrasíliaBrazil
  2. 2.Federal Institute of GoiásGoiâniaBrazil
  3. 3.State University of GoiásFormosaBrazil
  4. 4.Institute of PhysicsUniversity of BrasiliaBrasíliaBrazil
  5. 5.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations