Advertisement

Nonbonding interaction analyses on PVDF/[BMIM][BF4] complex system in gas and solution phase

  • Ranjini Sarkar
  • T. K. KunduEmail author
Original Paper
  • 76 Downloads

Abstract

The present study provides a detailed quantum chemical description of the physicochemical interactions between poly-vinylidene fluoride (PVDF) and 1-butyl-3-methyl-imidazolium tetrafluoro borate ([BMIM][BF4]) ionic liquid (IL). Geometry optimization and frequency calculations are carried out for four monomer units of α- and β-PVDF, [BMIM][BF4], and PVDF/[BMIM][BF4] using dispersion corrected density functional theory. The effects of solvation on the systems under study are demonstrated for three polar aprotic solvents, namely tetra-hydrofuran (THF), acetone, and n,n-dimethyl formamide (DMF) using the integral equation formalism polarizable continuum model (IEFPCM). Calculated negative solvation free energy values suggest solution phase stability of the systems under study. Binding and interaction energies for β-PVDF/IL are found higher in magnitude than those for α-PVDF/IL. The nonbonding interaction phenomenon of β-PVDF/[BMIM][BF4] is elucidated on the basis of natural bond orbital (NBO), Bader’s quantum theory of atoms in molecules (QTAIM), delocalization indices, Hirshfeld surface, and reduced density gradient (RDG) analyses. Both anions and cations of ionic liquids are found to show weak van der Waals interaction with PVDF molecule but the anion ([BF4])/PVDF interaction is found to be stronger than cation ([BMIM]+)/PVDF interaction. Inter-unit C−H⋯F type hydrogen bonds are found to show improper (causing blue shifts in vibrational frequencies) nature. Frontier molecular orbital analysis is carried out, and different chemical parameters like electronegativity, chemical potential, chemical hardness and softness, and electrophilicity index are calculated using Koopmans’ theorem. Thermochemical calculations are also performed, and the variation in different standard thermodynamic parameters with temperature is formulated.

Graphical abstract

(a) Hirshfeld surface mapped onto electron density and (b) NCI isosurfaces showing inter-unit interactions of β-PVDF/[BMIM][BF4]

Keywords

PVDF/IL complex Dispersion corrected DFT Interaction energy HOMO-LUMO NBO QTAIM Delocalization index Hirshfeld surface NCI RDG 

Notes

Supplementary material

894_2019_4020_MOESM1_ESM.docx (17.5 mb)
ESM 1 (DOCX 17901 kb)

References

  1. 1.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, OxfordGoogle Scholar
  2. 2.
    Itoh A, Takahashi Y, Furukawa T, Yajima H (2014) Solid-state calculations of poly(vinylidene fluoride) using the hybrid DFT method: spontaneous polarization of polymorphs. Polym J 46:207–211CrossRefGoogle Scholar
  3. 3.
    Bohlé M, Bolton K (2014) Conformational studies of poly(vinylidene fluoride), poly(trifluoroethylene) and poly(vinylidene fluoride-co-trifluoroethylene) using density functional theory. Phys Chem Chem Phys 16:12929–12939CrossRefGoogle Scholar
  4. 4.
    Nabata Y (1990) Structure of crosslinked poly (vinylidene fluoride) crystallized from melt under uniaxial compression. Jpn J Appl Phys 29:1298–1303CrossRefGoogle Scholar
  5. 5.
    Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S (2010) Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010 1–065010 7CrossRefGoogle Scholar
  6. 6.
    Qian X, Wu S, Furman E, Zhang Q, Su J (2015) Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Commun 5(2):115–129CrossRefGoogle Scholar
  7. 7.
    Abolhasani MM, Zarejousheghani F, Cheng ZX, Naebe M (2015) A facile method to enhance ferroelectric properties in PVDF nanocomposites. RSC Adv 5:22471–22479CrossRefGoogle Scholar
  8. 8.
    Mofokeng TG, Luyt AS, Pavlovic VP, Pavlovic VB, Dudic D, Vlahovic B, Djokovic V (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115:084109 1-9 CrossRefGoogle Scholar
  9. 9.
    Mahdi RI, Gan WC, Halim NA, Velayutham TS, Majid WHA (2015) Ferroelectric and pyroelectric properties of novel lead-free polyvinylidenefluoride-trifluoroethylene-Bi0.5Na0.5TiO3 nanocomposite thin films for sensing applications. Ceram Int 41:13836–13843CrossRefGoogle Scholar
  10. 10.
    Zeng H, Sabirianov R, Mryasov O, Yan ML, Cho K, Sellmyer DJ (2002) Curie temperature of FePt : B2O3 nanocomposite films. Phys Rev B 127:1–6Google Scholar
  11. 11.
    Lee WG, Park BE, Park KE (2013) Ferroelectric properties of the organic films of poly(vinylidene fluoride-trifluoroethylene) blended with inorganic Pb(Zr, Ti)O3. Thin Solid Films 546:171–175CrossRefGoogle Scholar
  12. 12.
    Xia W, Xu Z, Wen F, Zhang Z (2012) Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 38:1071–1075CrossRefGoogle Scholar
  13. 13.
    Chan HLW, Chan WK, Zhang Y, Choy CL (1998) Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites. IEEE Trans Dielectr Electr Insul 5:505–512CrossRefGoogle Scholar
  14. 14.
    Fang M, Wang Z, Li H, Wen Y (2015) Fabrication and dielectric properties of Ba(Fe0.5Nb0.5)O3/poly(vinylidene fluoride) composites. Ceram Int 117:1–6Google Scholar
  15. 15.
    Xing C, You J, Li Y, Li J (2015) Nanostructured poly(vinylidene fluoride)/ionic liquid composites: formation of organic conductive nanodomains in polymer matrix. J Phys Chem C 119:21155–21164CrossRefGoogle Scholar
  16. 16.
    Dias JC, Lopes AC, Magalhães B, Botelho G, Silva MM, Esperança JMSS, Lanceros-Mendez S (2015) High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Test 48:199–205CrossRefGoogle Scholar
  17. 17.
    Mejri R, Dias JC, Lopes AC, Hentati SB, Silva MM, Botelho G, Mão de Ferro A, Esperança JMSS, Maceiras A, Laza JM, Vilas JL, León LM, Lanceros-Mendez S (2015) Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechaical actuators. Eur Polym J 71:304–313CrossRefGoogle Scholar
  18. 18.
    Wang F, Lack A, Xie Z, Frübing P, Taubert A, Gerhard R (2012) Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films. Appl Phys Lett 100:1–6Google Scholar
  19. 19.
    Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion−CF2 dipole or negative ion−CH2 dipole interaction. J Phys Chem B 118:9104–9111CrossRefGoogle Scholar
  20. 20.
    Grimme S (2011) Density functional theory with London dispersion correction. WIREs Comput Mol Sci 1:211–228CrossRefGoogle Scholar
  21. 21.
    Clark T, Koch R (1999) The chemist’s electronic book of orbitals. Springer, HeidelbergCrossRefGoogle Scholar
  22. 22.
    Sarkar R, Kundu TK (2018) Density functional theory studies on PVDF/ionic liquid composite systems. J Chem Sci 130:115CrossRefGoogle Scholar
  23. 23.
    Levine IN (2012) Quantum chemistry, 7th edn. Pearson, New YorkGoogle Scholar
  24. 24.
    Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  25. 25.
    Garcia-Revilla M, Fransisco E, Popelier PLA, Pendas AM (2013) Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs. ChemPhysChem 14:1211–1218CrossRefGoogle Scholar
  26. 26.
    Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220CrossRefGoogle Scholar
  27. 27.
    C-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  28. 28.
    Ma W, Zhang J, Wang X (2008) Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N,N-dimethyl formamide mixed solvent. J Mater Sci 43:398–401CrossRefGoogle Scholar
  29. 29.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  30. 30.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum model solvation. 1. General formalism. J Chem Phys 132:114110 1-15 CrossRefGoogle Scholar
  31. 31.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GJ, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian Inc, WallingfordGoogle Scholar
  32. 32.
    Dennington R D, Ketith T A, Millam J M (2008) GaussView 5.0.8. Gaussian Inc, WallingfordGoogle Scholar
  33. 33.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372CrossRefGoogle Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  35. 35.
    Pal S, Kundu TK (2013) DFT-based inhibitor and promoter selection criteria for pentagonal dodecahedron methane hydrate cage. J Chem Sci 125:1259–1266CrossRefGoogle Scholar
  36. 36.
    Řezáč J, Hobza P (2016) Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev 116:5038–5071CrossRefGoogle Scholar
  37. 37.
    Duijneveldt FBV, Duijneveldt-van JGCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885CrossRefGoogle Scholar
  38. 38.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1837–1930CrossRefGoogle Scholar
  39. 39.
    Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput 13(7):3185–3197CrossRefGoogle Scholar
  40. 40.
    Ho J, Erton MZ (2016) Calculating free energy changes in continuum solvation models. J Phys Chem B 120:1319–1329CrossRefGoogle Scholar
  41. 41.
    Solymar L, Walsh D, Syms RRA (2014) Electronic properties of materials, 9th edn. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195CrossRefGoogle Scholar
  43. 43.
    Tsuneda T, Song JW, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133:174101–174109CrossRefGoogle Scholar
  44. 44.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  45. 45.
    Pal S, Kundu TK (2013) Stability analysis and frontier orbital study of different glycol and water complex. ISRN Phys Chem 2013:753139CrossRefGoogle Scholar
  46. 46.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  47. 47.
    Guillaumes L, Salvador P, Simon S (2014) A fuzzy-atom analysis of electron delocalization on hydrogen bonds. J Phys Chem A 118:1142–1149CrossRefGoogle Scholar
  48. 48.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32CrossRefGoogle Scholar
  49. 49.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  50. 50.
    Elyukhin VA (2016) Statistical thermodynamics of semiconductor alloys. Elsevier, WalthamGoogle Scholar
  51. 51.
    Irikura KK (2002) Thermo. Pl. National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  52. 52.
    Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1971) Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym J 3:600–610CrossRefGoogle Scholar
  53. 53.
    Wang ZY, Fan HQ, Su KH, Wen ZY (2006) Structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polym J 47:7988–7996CrossRefGoogle Scholar
  54. 54.
    Wu C, Visscher AD, Gates ID (2018) Interactions of biodegradable ionic liquids with a model napthenic acid. Nat Sci Rep 8:176CrossRefGoogle Scholar
  55. 55.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  56. 56.
    Bahadur I, Kgomotso M, Ebenso EE, Redhi G (2016) Influence of temperature on molecular interactions of imidazolium-based ionic liquids with acetophenone: thermodynamic properties and quantum chemical studies. RSC Adv 6:104708–104723CrossRefGoogle Scholar
  57. 57.
    Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109:2937–2941CrossRefGoogle Scholar
  58. 58.
    Ramer NJ, Marrone T, Stiso KA (2006) Structure and vibrational frequency determination for α-poly(vinylidene fluoride) using density-functional theory. Polym J 47:7160–7165CrossRefGoogle Scholar
  59. 59.
    Katsyuba SA, Zvereva EE, Vidis A, Dyson PJ (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111:352–370CrossRefGoogle Scholar
  60. 60.
    Shalu CSK, Singh RK, Chandra S (2003) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B 117:897–906CrossRefGoogle Scholar
  61. 61.
    Nalwa HS (1995) Ferroelectric polymers: chemistry, physics and applications. Dekker, New YorkCrossRefGoogle Scholar
  62. 62.
    Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735–4740CrossRefGoogle Scholar
  63. 63.
    Cammi R, Cappelli C, Corni S, Tomasi J (2000) On the calculation of infrared intensities in solution within the polarizable continuum. J Phys Chem A 104:9874–9879CrossRefGoogle Scholar
  64. 64.
    Yuan C, Yu H, Jia M, Su P, Luo Z, Yao J (2016) A theoretical study of weak interactions in phenylenediamine homodimer clusters. Phys Chem Chem Phys 18:29249–29257CrossRefGoogle Scholar
  65. 65.
    Kerelson M, Zerner MC (1990) On the n-π* blue shift accompanying solvation. J Am Chem Soc 112:9405–9406CrossRefGoogle Scholar
  66. 66.
    Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 10:1527–1536CrossRefGoogle Scholar
  67. 67.
    Olmo L, Morera-Boado C, Lopez R, Garcia de La Vega JM (2014) Electron density analysis of 1-butyl-3-methylimidazolium chloride ionic liquid. J Mol Model 20:2175 1–10CrossRefGoogle Scholar
  68. 68.
    Venkataraman NS, Suvitha A, Kawazoe Y (2017) Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: a DFT, NBO, AIM and NCI analysis. J Mol Graph Model 78:48–60CrossRefGoogle Scholar
  69. 69.
    Yoosefian M, Etminan N (2016) The role of solvent polarity in electronic properties, stability and reactive trend of a tryptophane/Pd doped SWCNT novel nanobiosensor from polar protic to non-polar solvents. RSC Adv 6:64818–64825CrossRefGoogle Scholar
  70. 70.
    Jablonski M (2018) Bond paths between distant atoms do not necessarily indicate dominant interactions. J Comput Chem 39:2183–2195CrossRefGoogle Scholar
  71. 71.
    Foroutan-Nejad C, Shahbazian S, Marek R (2018) Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chemistry 20:10140–10152CrossRefGoogle Scholar
  72. 72.
    Garcia-Revilla M, Popelier PLA, Fransisco E, Pendas AM (2011) Nature of chemical interactions from the profiles of electron delocalization indices. J Chem Theory Comput 7:1704–1711CrossRefGoogle Scholar
  73. 73.
    Mayer I, Salvador P (2009) Effective atomic orbitals for fuzzy atoms. J Chem Phys 130:234106CrossRefGoogle Scholar
  74. 74.
    Jablonski M, Sadlej AJ (2007) Blue-shifting intermolecular C−H⋯O interactions. J Phys Chem A 111:3423–3431CrossRefGoogle Scholar
  75. 75.
    Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Accounts 108:325–334CrossRefGoogle Scholar
  76. 76.
    Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4263CrossRefGoogle Scholar
  77. 77.
    Hobza P, Spirko V (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102(15):2501–2504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations