Skip to main content
Log in

Molecular modeling and QM/MM calculation clarify the catalytic mechanism of β-lactamase N1

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The treatment of bacterial infections is currently threatened by the emergence of pathogenic bacteria producing β-lactamase, which catalyzes the hydrolysis of β-lactams. Although the hydrolysis of the substrate nitrocefin by a metallo-β-lactamase, namely β-lactamase N1 from USA300 (a typical methicillin-resistant Staphylococcus aureus), has previously been reported in the literature, its mechanism remains elusive. Here, we show that molecular modeling and quantum-mechanical/molecular mechanics (QM/MM) calculations describing the complex of β-lactamase N1 with nitrocefin (the substrate of β-lactamase N1) can predict the catalytic mechanism of nitrocefin hydrolysis by β-lactamase N1. Molecular dynamics simulation shows that the catalytic reaction begins with hydrogen bond formation between Gln171 and a water molecule, which is thereby captured for nitrocefin hydrolysis by β-lactamase N1. In addition, the carboxyl group coordinates Zn2 in a chelating fashion. The binding energy decompositions suggest that Phe169 anchors nitrocefin by π-stacking interactions between the benzene rings. Specifically, Phe169 and Zn2 position the nitrocefin in specific orientations. The active site of β-lactamase N1 contains two residues (Gln171 and Phe169) that we expected to be crucial for guiding the nitrocefin hydrolysis reaction. Compelling evidence is provided that the mutants F169A and Q171A show lower enzymatic activity than the wild-type protein. On the basis of the QM/MM calculations, we propose that nitrocefin hydrolysis is initiated by the interaction between the oxygen atom of water and the C18 atom of nitrocefin, leading to the opening of the four-membered ring of nitrocefin and the formation of a substrate intermediate. In the next step, a hydrogen atom transfers from the nitrogen atom to the C11 atom of nitrocefin, resulting in the stable product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. The antibiotic alarm (2013). Nature 495(7440):141

    Google Scholar 

  2. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317. https://doi.org/10.1038/nrmicro3439

    Article  PubMed  CAS  Google Scholar 

  3. Bush K (2013) Proliferation and significance of clinically relevant beta-lactamases. Ann N Y Acad Sci 1277:84–90. https://doi.org/10.1111/nyas.12023

    Article  PubMed  CAS  Google Scholar 

  4. King DT, Strynadka NC (2013) Targeting metallo-beta-lactamase enzymes in antibiotic resistance. Future Med Chem 5(11):1243–1263. https://doi.org/10.4155/fmc.13.55

    Article  PubMed  CAS  Google Scholar 

  5. Hall BG, Barlow M (2005) Revised ambler classification of {beta}-lactamases. J Antimicrob Chemother 55(6):1050–1051. https://doi.org/10.1093/jac/dki130

    Article  PubMed  CAS  Google Scholar 

  6. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54(3):969–976. https://doi.org/10.1128/AAC.01009-09

    Article  PubMed  CAS  Google Scholar 

  7. Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201. https://doi.org/10.1128/CMR.00037-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Neuwald AF, Liu JS, Lipman DJ, Lawrence CE (1997) Extracting protein alignment models from the sequence database. Nucleic Acids Res 25(9):1665–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frere JM, Dideberg O (1995) The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 14(20):4914–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aravind L (1999) An evolutionary classification of the metallo-ß-lactamase fold proteins. In Silico Biol 1(2):69–91

    PubMed  CAS  Google Scholar 

  11. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 503(1):1–6

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Rasmussen BA, Bush K (1992) Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother 36(5):1155–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Felici A, Amicosante G, Oratore A, Strom R, Ledent P, Joris B, Fanuel L, Frere JM (1993) An overview of the kinetic parameters of class B beta-lactamases. Biochem J 291(Pt 1):151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felici A, Amicosante G (1995) Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases. Antimicrob Agents Chemother 39(1):192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasmussen BA, Yang Y, Jacobus N, Bush K (1994) Contribution of enzymatic properties, cell permeability, and enzyme expression to microbiological activities of beta-lactams in three Bacteroides fragilis isolates that harbor a metallo-beta-lactamase gene. Antimicrob Agents Chemother 38(9):2116–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4(7):823–836

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald PM, Wu JK, Toney JH (1998) Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-a resolution. Biochemistry 37(19):6791–6800. https://doi.org/10.1021/bi9730339

    Article  PubMed  CAS  Google Scholar 

  18. Davies RB, Abraham EP (1974) Metal cofactor requirements of beta-lactamase II. Biochem J 143(1):129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bandoh K, Muto Y, Watanabe K, Katoh N, Ueno K (1991) Biochemical properties and purification of metallo-beta-lactamase from Bacteroides fragilis. Antimicrob Agents Chemother 35(2):371–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garces F, Fernandez FJ, Montella C, Penya-Soler E, Prohens R, Aguilar J, Baldoma L, Coll M, Badia J, Vega MC (2010) Molecular architecture of the Mn2+−dependent lactonase UlaG reveals an RNase-like metallo-beta-lactamase fold and a novel quaternary structure. J Mol Biol 398(5):715–729. https://doi.org/10.1016/j.jmb.2010.03.041

    Article  PubMed  CAS  Google Scholar 

  21. Salimraj R, Zhang L, Hinchliffe P, Wellington EM, Brem J, Schofield CJ, Gaze WH, Spencer J (2016) Structural and biochemical characterization of Rm3, a subclass B3 metallo-beta-lactamase identified from a functional metagenomic study. Antimicrob Agents Chemother 60(10):5828–5840. https://doi.org/10.1128/AAC.00750-16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghavami A, Labbe G, Brem J, Goodfellow VJ, Marrone L, Tanner CA, King DT, Lam M, Strynadka NC, Pillai DR, Siemann S, Spencer J, Schofield CJ, Dmitrienko GI (2015) Assay for drug discovery: synthesis and testing of nitrocefin analogues for use as beta-lactamase substrates. Anal Biochem 486:75–77. https://doi.org/10.1016/j.ab.2015.06.032

    Article  PubMed  CAS  Google Scholar 

  23. Qiu J, Niu X, Dong J, Wang D, Wang J, Li H, Luo M, Li S, Feng H, Deng X (2012) Baicalin protects mice from Staphylococcus aureus pneumonia via inhibition of the cytolytic activity of alpha-hemolysin. J Infect Dis 206(2):292–301. https://doi.org/10.1093/infdis/jis336

    Article  PubMed  CAS  Google Scholar 

  24. Newman JA, Hewitt L, Rodrigues C, Solovyova A, Harwood CR, Lewis RJ (2011) Unusual, dual endo- and exonuclease activity in the degradosome explained by crystal structure analysis of RNase J1. Structure 19(9):1241–1251. https://doi.org/10.1016/j.str.2011.06.017

    Article  PubMed  CAS  Google Scholar 

  25. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  PubMed  CAS  Google Scholar 

  26. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  PubMed  CAS  Google Scholar 

  29. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128

    Article  PubMed  CAS  Google Scholar 

  30. Punkvang A, Saparpakorn P, Hannongbua S, Wolschann P, Beyer A, Pungpo P (2010) Investigating the structural basis of arylamides to improve potency against M. Tuberculosis strain through molecular dynamics simulations. Eur J Med Chem 45(12):5585–5593. https://doi.org/10.1016/j.ejmech.2010.09.008

    Article  PubMed  CAS  Google Scholar 

  31. Schaffner-Barbero C, Gil-Redondo R, Ruiz-Avila LB, Huecas S, Lappchen T, den Blaauwen T, Diaz JF, Morreale A, Andreu JM (2010) Insights into nucleotide recognition by cell division protein FtsZ from a mant-GTP competition assay and molecular dynamics. Biochemistry 49(49):10458–10472. https://doi.org/10.1021/bi101577p

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the National Nature Science Foundation of China [Grant no. 31572566 to X. D. N].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuming Deng or Xiaodi Niu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, X., Gao, Y. et al. Molecular modeling and QM/MM calculation clarify the catalytic mechanism of β-lactamase N1. J Mol Model 25, 118 (2019). https://doi.org/10.1007/s00894-019-4001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4001-z

Keywords

Navigation