Skip to main content
Log in

Functionalization of silicene and silicane with benzaldehyde

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Organic functionalization of nanomaterials offers exceptional flexibility in materials design, and applications in molecular sensors and molecular electronics are expected. However, more studies should be conducted to understand the interaction between nanomaterials and organic molecules. In this work, we studied the functionalization of silicene and silicane with benzaldehyde, performing nudged elastic band calculations within density functional theory. We calculated the structural changes of the adsorption process, electronic properties of the main states, and the energetics. In silicene, the adsorption of benzaldehyde on the top site was found to be the most stable, with an adsorption energy of −0.55 eV. For silicane, the functionalization proceeds through a self-propagating reaction on a highly reactive dangling bond generated by a hydrogen atom vacancy. Benzaldehyde adsorbed on this site depicts an adsorption energy of −1.39 eV, which is larger than in bare silicene. Upon attaching, the double C=O bond breaks down turning the molecule into a highly reactive radical, which in this case, abstracts a neighboring H atom of the sheet. This process is highly achievable since the energy barrier to abstract the H atoms is 0.81 eV, whereas the one needed to desorb the molecule is 1.39 eV. After H abstraction, a new dangling bond is generated at the substrate, making a chain reaction possible to potentially form benzaldehyde monolayers. Organic functionalization is an excellent tool to engineer properties of 2D systems, and having a deeper understanding of the adsorption processes is the first step toward the development of new generation devices.

Benzaldehyde adsorbed on silicene and silicane

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Voon LCLY, Guzmán-Verri GG (2014) Is silicene the next graphene? MRS Bull 39:366–373

    Article  CAS  Google Scholar 

  2. Kara A, Enriquez H, Seitsonen AP et al (2012) A review on silicene—new candidate for electronics. Surf Sci Rep 67:1–18

    Article  CAS  Google Scholar 

  3. Jose D, Datta A (2013) Structures and chemical properties of silicene: unlike graphene. Acc Chem Res 47:593–602

    Article  CAS  Google Scholar 

  4. Guzmán-Verri GG, Voon LCLY (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:75131

    Article  CAS  Google Scholar 

  5. Balendhran S, Walia S, Nili H et al (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640–652

    Article  CAS  Google Scholar 

  6. Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent experimental and theoretical investigations. J Phys Condens Matter 27:253002

    Article  CAS  Google Scholar 

  7. Cahangirov S, Topsakal M, Akturk E et al (2008) Two and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804. https://doi.org/10.1103/PhysRevLett.102.236804

    Article  CAS  Google Scholar 

  8. Houssa M, Pourtois G, Afanas’ ev VV, Stesmans A (2010) Can silicon behave like graphene? A first-principles study. Appl Phys Lett 97:112106

    Article  CAS  Google Scholar 

  9. Ezawa M (2012) Valley-polarized metals and quantum anomalous hall effect in silicene. Phys Rev Lett 109:55502

    Article  CAS  Google Scholar 

  10. Matthes L, Pulci O, Bechstedt F (2014) Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J Phys 16:105007

    Article  CAS  Google Scholar 

  11. Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501

    Article  CAS  Google Scholar 

  12. Feng B, Ding Z, Meng S et al (2012) Evidence of silicene in honeycomb structures of silicon on ag (111). Nano Lett 12:3507–3511

    Article  CAS  Google Scholar 

  13. Chiappe D, Grazianetti C, Tallarida G et al (2012) Local electronic properties of corrugated silicene phases. Adv Mater 24:5088–5093

    Article  CAS  Google Scholar 

  14. Fleurence A, Friedlein R, Ozaki T et al (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Article  CAS  Google Scholar 

  15. Meng L, Wang Y, Zhang L et al (2013) Buckled silicene formation on Ir (111). Nano Lett 13:685–690

    Article  CAS  Google Scholar 

  16. Peng Q, Dearden AK, Crean J et al (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1

    Article  CAS  Google Scholar 

  17. Zhang R, Zhang C, Ji W et al (2014) Silicane as an inert substrate of silicene: a promising candidate for FET. J Phys Chem C 118:25278–25283

    Article  CAS  Google Scholar 

  18. Zheng F, Zhang C (2012) The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res Lett 7:422

    Article  CAS  Google Scholar 

  19. Huang B, Deng H-X, Lee H et al (2014) Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X 4:21029

    Google Scholar 

  20. Hill JW, Kolb DK, Hill CS (2015) Chemistry for changing times. Prentice Hall, Saddle River

  21. Yates JT (1998) A new opportunity in silicon-based microelectronics. Science 80(279):335–336

    Article  Google Scholar 

  22. Bent SF (2002) Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf Sci 500:879–903

    Article  CAS  Google Scholar 

  23. Nilsson A, Pettersson LGM, Norskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam

    Chapter  Google Scholar 

  24. Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys 138:194702

    Article  CAS  Google Scholar 

  25. Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated graphene. J Phys Chem C 117:18738–18745

    Article  CAS  Google Scholar 

  26. Rubio-Pereda P, Takeuchi N (2015) Adsorption of organic molecules on the hydrogenated germanene: a DFT study. J Phys Chem C 119:27995–28004

    Article  CAS  Google Scholar 

  27. Rubio-Pereda P, Takeuchi N (2016) Surface reactivity of Ge [111] for organic functionalization by means of a radical-initiated reaction: a DFT study. Appl Surf Sci 379:14–22

    Article  CAS  Google Scholar 

  28. Rubio-Pereda P, Takeuchi N (2016) Van der Waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J Mol Model 22:175

    Article  CAS  Google Scholar 

  29. Morachis-Galindo D, Rubio-Pereda P, Takeuchi N (2017) Organic functionalization of silicane with formaldehyde and propanaldehyde. Appl Surf Sci 392:841–848

    Article  CAS  Google Scholar 

  30. Ventura-Macias E, Guerrero-Sánchez J, Takeuchi N (2017) Formaldehyde adsorption on graphane. Comput Theor Chem 1117:119–123

    Article  CAS  Google Scholar 

  31. Brühne F, Wright E (2011) Benzaldehyde. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a03_463.pub2

  32. Kanai Y, Takeuchi N, Car R, Selloni A (2005) Role of molecular conjugation in the surface radical reaction of aldehydes with H-Si(111): first principles study. J Phys Chem B. https://doi.org/10.1021/jp0527610

    Article  CAS  Google Scholar 

  33. Rasmussen AMH, Hammer B (2012) Adsorption, mobility, and dimerization of benzaldehyde on Pt(111). J Chem Phys. https://doi.org/10.1063/1.4707952

    Article  CAS  Google Scholar 

  34. Benz L, Haubrich J, Jensen SC, Friend CM (2011) Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110). ACS Nano. https://doi.org/10.1021/nn103144u

    Article  CAS  Google Scholar 

  35. Akdim B, Kim SN, Naik RR et al (2009) Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations. Nanotechnology. https://doi.org/10.1088/0957-4484/20/35/355705

    Article  CAS  Google Scholar 

  36. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens matter 21:395502

    Article  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  38. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227

    Article  CAS  Google Scholar 

  39. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  40. Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0408127102

    Article  CAS  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  42. Şahin H, Ataca C, Ciraci S (2010) Electronic and magnetic properties of graphane nanoribbons. Phys Rev B 81:205417

    Article  CAS  Google Scholar 

  43. Osborn TH, Farajian AA, Pupysheva OV et al (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2011.06.009

    Article  CAS  Google Scholar 

  44. Møller M, Jarvis SP, Gu�rinet L et al (2017) Automated extraction of single H atoms with STM: tip state dependency. Nanotechnology 28. https://doi.org/10.1088/1361-6528/28/7/075302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank DGAPA-UNAM project IN101019, and Conacyt grant A1-S-9070 of the Call of Proposals for Basic Scientific Research 2017−2018 for partial financial support. N.T. thanks DGAPA-UNAM for a scholarship at the University of California, Riverside. Calculations were performed in the DGCTIC-UNAM Supercomputing Center, project LANCAD-UNAM-DGTIC-051. We thank A. Rodriguez Guerrero for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Guerrero-Sánchez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarmiento-García, R., Guerrero-Sánchez, J. & Takeuchi, N. Functionalization of silicene and silicane with benzaldehyde. J Mol Model 25, 109 (2019). https://doi.org/10.1007/s00894-019-3997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3997-4

Keywords

Navigation