Skip to main content
Log in

Prediction of membrane separation efficiency for hydrophobic and hydrophilic proteins

A coarse-grained Brownian dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A coarse-grained Brownian dynamics model was used to simulate two proteins of similar sizes inside model membrane pores of varying size and hydrophobicity. The two proteins, which have radii of gyration of approximately 9.5 Å in their native states, are a 36-residue hydrophilic villin head piece (HP-36) and a 40-residue hydrophobic amyloid beta (Aβ-40). From calculations of the separation factor, it is found that the two proteins are best separated using a pore radius of 15 Å and that hydrophobic pores select Aβ-40 while the hydrophilic pores preferentially pass through HP-36. In addition, it is found that a simple model based on the net hydropathy of a protein is capable of estimating the separation factor trends of other protein pairs. Together, the coarse-grained Brownian dynamics model and the simple model are fast methodologies to guide experimental membrane design and to provide insights on protein structure variations.

Simulation setup and snapshots of protein in various pore sizes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W. H. Freeman, New York

    Google Scholar 

  2. Lodish H, Berk A, Zipursky S (2000) Molecular Cell Biology. W. H. Freeman, New York

    Google Scholar 

  3. Zhu Z, Lu JJ, Liu S (2012) Protein separation by capillary gel electrophoresis: A review. Analytica Chimica Acta 709:21–31

    Article  PubMed  CAS  Google Scholar 

  4. Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: The past and the present. J Biomed Biotechnol 2009: ID: 574398

  5. Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20(3):227–243

    Article  PubMed  CAS  Google Scholar 

  6. Still WC, Kahn M, Mitra A (1978) Rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem 43(14):2923–2925

    Article  CAS  Google Scholar 

  7. Jennissen HP (1978) Multivalent interaction chromatography as exemplified by the adsorption and desorption of skeletal muscle enzymes on hydrophobic alkyl-agaroses. J Chromatogr 159:71–83

    Article  PubMed  CAS  Google Scholar 

  8. Paul-Dauphin S, Karaca F, Morgan TJ, Millan-Agorio M, Herod AA, Kandiyoti R (2007) Probing size exclusion mechanisms of complex hydrocarbon mixtures: The effect of altering eluent compositions. Energy Fuels 21(6):3484–3489

    Article  CAS  Google Scholar 

  9. Broek AP, Teunis HA, Bargeman D, Sprengers ED, Strathmann H, Smolders CA (1995) Characterization of hemodialysis membranes by inverse size exclusion chromatography. J Membr Sci 99(3):217–228

    Article  CAS  Google Scholar 

  10. Hong P, Koza S, Bouvier ES (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35(20):2923–2950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lindqvist B, Storgards T (1955) Molecular-sieving properties of starch. Nature 175(4455):511–512

    Article  CAS  Google Scholar 

  12. Berek D (2010) Size exclusion chromatography—a blessing and a curse of science and technology of synthetic polymers. J Sep Sci 33(3):315–335

    Article  PubMed  CAS  Google Scholar 

  13. Hofstee BHJ, Otillio N (1978) Non-ionic adsorption chromatography of proteins. J Chromatogr A 159 (1):57–69

    Article  CAS  Google Scholar 

  14. Jennissen HP, Heilmeyer LM (1975) General aspects of hydrophobic chromatography. Adsorption and elution characteristics of some skeletal muscle enzymes. Biochemistry 14(4):754–760

    Article  PubMed  CAS  Google Scholar 

  15. Porath J, Sundberg L, Fornstedt N, Olsson I (1973) Salting-out in amphiphilic Gels as a new approach to hydrophobia adsorption. Nature 245(5426):465–466

    Article  PubMed  CAS  Google Scholar 

  16. Himstedt HH, Qian X, Weaver JR, Wickramasinghe SR (2013) Responsive membranes for hydrophobic interaction chromatography. J Membr Sci 447:335–344

    Article  CAS  Google Scholar 

  17. McCue JT (2009) Chapter 25 theory and use of hydrophobic interaction chromatography in protein purification applications. In: Methods in Enzymology. 1st edn., vol 463. Elsevier Inc., Amsterdam, pp 405–414

    Google Scholar 

  18. Alpert AJ (1988) Hydrophobic interaction chromatography of peptides as an alternative to reversed-phase chromatography. J Chromatogr A 444(C):269–274

    Article  CAS  Google Scholar 

  19. Mohammadi-Jam S, Waters KE (2014) Inverse gas chromatography applications: a review. Adv Colloid Interf Sci 212:21–44

    Article  CAS  Google Scholar 

  20. Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211

    Article  PubMed  Google Scholar 

  21. Porter M (1972) Concentration Polarization with Membrane ultrafiltration. Ind Eng Chem Prod Res Dev 11 (3):234–248

    Article  CAS  Google Scholar 

  22. Rohani MM, Zydney AL (2010) Role of electrostatic interactions during protein ultrafiltration. Adv Colloid Interf Sci 160(1-2):40–48

    Article  CAS  Google Scholar 

  23. Avramescu ME, Borneman Z, Wessling M (2003) Mixed-matrix membrane adsorbers for protein separation. J Chromatogr A 1006(1-2):171–183

    Article  PubMed  CAS  Google Scholar 

  24. Musale DA, Kulkarni SS (1997) Relative rates of protein transmission through poly(acrylonitrile) based ultrafiltration membranes. J Membr Sci 136(1-2):13–23

    Article  CAS  Google Scholar 

  25. Weidman JL, Mulvenna RA, Boudouris BW, Phillip WA (2016) Unusually stable hysteresis in the ph-response of poly(acrylic acid) brushes confined within nanoporous block polymer thin films. J Am Chem Soc 138 (22):7030–7039

    Article  PubMed  CAS  Google Scholar 

  26. Latour RA (2008) Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review). Biointerphases 3(3):FC2–FC12

    Article  PubMed  CAS  Google Scholar 

  27. Riccardi E, Wang JC, Liapis AI (2010) A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand. J Chem Phys 133(8):084904

    Article  PubMed  CAS  Google Scholar 

  28. Yesudasan S, Wang X, Averett RD (2018) Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure. J Mol Model 24(5):109

    Article  PubMed  CAS  Google Scholar 

  29. Nnyigide OS, Lee SG, Hyun K (2018) Exploring the differences and similarities between urea and thermally driven denaturation of bovine serum albumin: intermolecular forces and solvation preferences. J Mol Model 24(3):75

    Article  PubMed  CAS  Google Scholar 

  30. Basconi JE, Carta G, Shirts MR (2015) Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: A multiscale modeling study. Langmuir 31(14):4176–4187

    Article  PubMed  CAS  Google Scholar 

  31. Basconi JE, Carta G, Shirts MR (2017) Effects of protein properties on adsorption and transport in polymer-grafted ion exchangers: A multiscale modeling study. AICHE J 63(10):4564–4575. 0201037v1

    Article  CAS  Google Scholar 

  32. May A, Pool R, van Dijk E, Bijlard J, Abeln S, Heringa J, Feenstra KA (2014) Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins. Bioinformatics 30(3):326–334

    Article  PubMed  CAS  Google Scholar 

  33. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15(2):144–150

    Article  PubMed  CAS  Google Scholar 

  34. Mukherjee A, Bagchi B (2003) Correlation between rate of folding, energy landscape, and topology in the folding of a model protein HP-36. J Chem Phys 118(10):4733–4747

    Article  CAS  Google Scholar 

  35. Bandyopadhyay S, Chakraborty S, Bagchi B (2006) Coupling between hydration layer dynamics and unfolding kinetics of HP-36. J Chem Phys 125(8):084912

    Article  PubMed  CAS  Google Scholar 

  36. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–7936

    Article  PubMed  CAS  Google Scholar 

  37. Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31(2):526–535

    Article  CAS  Google Scholar 

  38. Nick Pace C, Martin Scholtz J (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75(1):422–427

    Article  Google Scholar 

  39. Weidman JL, Mulvenna RA, Boudouris BW, Phillip WA (2015) Nanostructured membranes from triblock polymer precursors as high capacity copper adsorbents. Langmuir 31(40):11113– 11123

    Article  PubMed  CAS  Google Scholar 

  40. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105– 132

    Article  PubMed  CAS  Google Scholar 

  41. Ermak DL, Mccammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 1352(69):4

  42. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  43. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17(3):1302–1322

    Article  CAS  Google Scholar 

  44. Gibbs JW (1902) Elementary Principles in Statistical Mechanics. Dover Publications, INC., New York

    Google Scholar 

  45. Sandell EB (1968) Meaning of the term separation factor. Anal Chem 40(4):834–835

    Article  CAS  Google Scholar 

  46. Baker RW (2012) Membranes and modules. In: Membrane Technology and Applications, John Wiley & Sons, Ltd., pp 97–168

  47. Grossfield A, Feller S, Pitman M (2007) Convergence of molecular dynamics simulations of membrane proteins. PROTEINS: Struct. Func, and Bioinfor 67:31–40

    Article  CAS  Google Scholar 

  48. Lyman E, Zuckerman DM (2007) On the structural convergence of biomolecular simulations by determination of the effective sample size. J Phys Chem B 111(44):12876–12882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Grossfield A, Zuckerman DM (2009) Quantifying Uncertainty and Sampling Quality in Biomolecular Simulations, vol 5. Elsevier, Amsterdam

    Google Scholar 

  50. McKnight CJ, Matsudaira PT, Kim PS (1997) NMR Structure of the 35-residue villin headpiece subdomain. Nat Struct Biol 4(3):180–184

    Article  PubMed  CAS  Google Scholar 

  51. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42(4):623–628

    Article  CAS  Google Scholar 

  52. Jang S, Kim E, Shin S, Pak Y (2003) Ab initio folding of helix bundle proteins using molecular dynamics simulations. J Am Chem Soc 125(48):14841–14846

    Article  PubMed  CAS  Google Scholar 

  53. Duan LL, Zhu T, Zhang QG, Tang B, Zhang JZH (2014) Electronic polarization stabilizes tertiary structure prediction of HP-36. J Mol Model 20(4):2195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vivekanandan S, Brender JR, Lee SY, Ramamoorthy A (2011) A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem Biophys Res Commun 411(2):312– 316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang-Haagen B, Biehl R, Nagel-Steger L, Radulescu A, Richter D, Willbold D (2016) Monomeric amyloid beta peptide in hexafluoroisopropanol detected by small angle neutron scattering. PLOS ONE 11(2):e0150267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nag S, Sarkar B, Bandyopadhyay A, Sahoo B, Sreenivasan VKA, Kombrabail M, Muralidharan C, Maiti S (2011) Nature of the amyloid-β monomer and the monomer-oligomer equilibrium. J Biol Chem 286(16):13827–13833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, Frank RW, Rosch P (1995) Structure of amyloid A4-(1-40)-Peptide of Alzheimer’s disease. Eur J Biochem 233(1):293– 298

    Article  PubMed  CAS  Google Scholar 

  58. Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19(3):319–333

    Article  CAS  Google Scholar 

  59. Negi S, Zhu H, Fraczkiewicz R, Braun W (2008) Calculation of solvent accessible surface area, atomic solvation energies and their gradients for macromolecules

  60. Eisenberg D, McLachlan AD, Eisenberg D, McLachlan AD, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319(6050):199–203

    Article  PubMed  CAS  Google Scholar 

  61. García De La Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78(2):719–730

    Article  PubMed  PubMed Central  Google Scholar 

  62. Akiyama S, Takahashi S, Kimura T, Ishimori K, Morishima I, Nishikawa Y, Fujisawa T (2002) Conformational landscape of cytochrome C folding studied by microsecond-resolved small-angle X-ray scattering. Proc Natl Acad Sci 99(3):1329–1334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Santos SF, Zanette D, Fischer H, Itri R (2003) A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. J Colloid Interface Sci 262(2):400–408

    Article  PubMed  CAS  Google Scholar 

  64. Schneider R, Mayer A, Schmatz W, Schelten J, Franzel R, Eicher H (1971) X-ray and neutron small-angle scattering from hemoglobin in aqueous solution and in crystal. Eur J Biochem 20(2):179–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the National Science Foundation: Division of Chemical, Bioengineering, Environmental, and Transport Systems (1511862). Computational resources are provided by Notre Dame’s Center for Research Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Maginn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Y., McCready, M.J. et al. Prediction of membrane separation efficiency for hydrophobic and hydrophilic proteins. J Mol Model 25, 132 (2019). https://doi.org/10.1007/s00894-019-3985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3985-8

Keywords

Navigation