Skip to main content
Log in

DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have performed a Density Functional study of the CO adsorption in B-doped, N-doped and BN-co-doped graphene considering a coronene based model in order to estimate the applications of this systems as CO-sensor. Different monosubstituted, disubstituted and trisubstituted alternatives of combining these two heteroatoms in a substitutional chemical doping and the influence of the relative positions of the heteroatoms are analyzed. In this study, the stability selectivity for CO adsorption and the change in the electric properties for the presence of this molecule, have been evaluated through the calculation of binding energy, CO-adsorption’s energy and the gap HOMO-LUMO change due to CO adsorption. The results indicated that, even though all the configurations were stables and was confirmed a CO physical adsorption in all of them, the relative positions of Nitrogen and Boron gave different stabilities and different responses to the CO adsorption. Since monosubstituted Boron-coronene was the second in stability respect to pristine coronene, showed the highest CO adsorption energy and was also the second highest ∆(∆HOMO-LUMO) value, this structure could be potentially a good CO-sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 321:385–388

    Article  CAS  Google Scholar 

  3. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of grapheme. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  4. Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602

    Article  CAS  Google Scholar 

  5. Mukherjee S, Kaloni TP (2012) Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J Nanopart Res 14:1059–1063

  6. Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5:1353–1368

    Article  CAS  Google Scholar 

  7. Usachov D, Vilkov O, Grneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407

    Article  CAS  Google Scholar 

  8. Yu W, Zheng C, Wang D, Jiang Q (2010) Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene. ACS Nano 4:7619–7629

    Article  CAS  Google Scholar 

  9. Zheng B, Hermet P, Henrard L (2010) Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. ACS Nano 4:4165–4173

    Article  CAS  Google Scholar 

  10. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    Article  CAS  Google Scholar 

  11. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  12. Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165

    Article  CAS  Google Scholar 

  13. Yang GH, Zhou YH, Wu JJ, Cao JT, Li LL, Liu HY, Zhu JJ (2013) Microwave-assisted synthesis of nitrogen and boron co- doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv 3:22597–22604

    Article  CAS  Google Scholar 

  14. Kaloni TP, Joshi RP, Adhikari NP, Schwingenschlögl U (2014) Band gap Tunning in BN-doped graphene systems with high carrier mobility. Appl Phys Lett 104:073116

    Article  Google Scholar 

  15. Panchakarla LS, Subrahmanyam KS, Saha SK, Achutharao G, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:1521–4095

    Article  Google Scholar 

  16. Rani P, Jindal VK (2013) Designing band gap of by B and NDopant atoms. RSC Adv 3:802–812

    Article  CAS  Google Scholar 

  17. Yang F, Cao Y, Chen Z, He X, Hou L, Li Y (2018) Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for the reduction of nitroarenes. New J Chem 42:2718–2725

    Article  CAS  Google Scholar 

  18. Wei XL, Fang H, Wang RZ, Chen YP, Zhong JX (2011) Energy gaps in nitrogen delta-doping graphene: a first-principles study. Appl Phys Lett 99:012107

    Article  Google Scholar 

  19. Deifallah M, McMillan PF, Cora F (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C 112:5447–5453

    Article  CAS  Google Scholar 

  20. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  21. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3:1746–1753

    Article  CAS  Google Scholar 

  22. Jelolaica L, Sidis V (1999) DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem Phys Lett 300:157–162

    Article  Google Scholar 

  23. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on grapheme. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  24. Qazi M, Vogt T, Koley G (2007) Trace gas detection using nanostructured graphite layers. Appl Phys Lett 91:233101

    Article  Google Scholar 

  25. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113

    Article  CAS  Google Scholar 

  26. Zhang X, Cui H, Gui CY (2017) Synthesis of graphene-based sensors and application on detecting SF6 decomposing products: a review. Sensors 17:363

    Article  Google Scholar 

  27. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-Wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329–11333

    Article  CAS  Google Scholar 

  28. Choudhuri N, Patra A, Mahata R, Ahuja BP (2015) B-N@ graphene: highly sensitive and selective gas sensor. J Phys Chem C 119:24827–24836

    Article  CAS  Google Scholar 

  29. Dai J, Giannozzi P, Yuan J (2009) Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO + NO3 from NO2. Surf Sci 603:3234

    Article  CAS  Google Scholar 

  30. Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. App Phys Lett 95:232105

    Article  Google Scholar 

  31. Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119

    Article  Google Scholar 

  32. Joshi RK, Gomez H, Alvi F, Kumar A (2010) Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J Phys Chem C 114:6610–6613

    Article  CAS  Google Scholar 

  33. Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB, Kalantar-Zadeh K, Wlodarski W (2009). Chem Phys Lett 467:344

    Article  CAS  Google Scholar 

  34. Ao ZM, Yang J, Li S, Jiang Q (2008) Enhancement of CO detection in Al doped graphene. Chem Phys Lett 461:276–279

    Article  CAS  Google Scholar 

  35. Rad AS, Shabestarib SS, Jafaric SA, Zardoostd MR, Mirabid A (2016) N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations. Mol Phys 1362:3028

    Google Scholar 

  36. Kumar S, Meenakshi, Sharma H (2017) Effect of gas adsorption on graphene nanoribbons: a density functional theory. Mater Today Proc 4:10441–10445

    Article  Google Scholar 

  37. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  Google Scholar 

  38. Rohini K, Daniel MRS, Swathi SR (2015) Intercalation of HF, H2O, and NH3 clusters within the bilayers of graphene and graphene oxide: predictions from coronene-based model systems. Phys Chem A 119:10935–10945

    Article  CAS  Google Scholar 

  39. Yeamin MB, Faginas-Lago N, Albert E, Cuesta IG, Sanchez-Marín J, Sánchez de Merás AMJ (2014) Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv 4:54447–54453

    Article  CAS  Google Scholar 

  40. Wilson J, Faginas-Lago N, Vekeman J, Cuesta IG, Sánchez-Marín J, Sánchez de Merás A (2018) Modeling the interaction of carbon monoxide with flexible graphene: from coupled cluster calculations to molecular-dynamics simulations. Chem Phys Chem 19:774–783

    Article  CAS  Google Scholar 

  41. Petrushenko IK, Petrushenko KB (2017) Physical adsorption of N-containing heterocycles on graphene-like boron nitride-carbon heterostructures: a DFT study. Comput Theor Chem 1117:162–168

    Article  CAS  Google Scholar 

  42. Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J Solid State Chem 237:204–210

    Article  CAS  Google Scholar 

  43. Wanno B, Tabtimsai C (2014) A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattice Microst 67:110–117

    Article  CAS  Google Scholar 

  44. Chigo-Anota E, Salazar-Villanueva M, Hernandez-Cocoletzi H (2010) Density functional theory study of lithium and fluoride doped boron nitride sheet. Phys State Solid C 7:2559

    Article  Google Scholar 

  45. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc Wallingford CT

  47. Burke K, Perdew JP, Levy M (1995) In: Seminario JM, Politzer P (eds) Modern density functional theory: a tool for chemistry. theoretical and computational chemistry, vol 2. Elsevier, Amsterdam

  48. Wesolowski TA, Parisel O, Ellinger Y, Weber J (1997) Comparative study of benzene···X (X = O2, N2, CO) complexes using density functional theory:  the importance of an accurate exchange−correlation energy density at high reduced density gradients J Phys Chem A 101:7818–7825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Programa interno de apoyo para Proyectos de investigación (PIAPI)-Facultad de Estudios Superiores Cuautitlán–Universidad Nacional Autónoma de México with Grant PIAPI-1813. We gratefully acknowledge the generous computing time provided by Dirección General de Cómputo y de Tecnologías de Información y Comunicación at the Universidad Nacional Autónoma de México through the Grants LANCAD-UNAM-DGTIC-156. The authors also thanks Red Mexicana de Fisicoquímica Teórica (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Agacino-Valdés.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-López, LF., Pacheco-Ortin, SM., Mejía-Olvera, R. et al. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications. J Mol Model 25, 91 (2019). https://doi.org/10.1007/s00894-019-3973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3973-z

Keywords

Navigation