Advertisement

Bloch Oscillations in Fibonacci lattices: polaron formation

  • Paulo Eduardo de BritoEmail author
  • Bernhard Georg Enders
  • Luiz Antonio RibeiroJr
  • Hugo Nicolas Nazareno
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

We investigated the dynamics of an electron subjected to a uniform electric field in the scope of a tight-binding electron–phonon interacting approach. We aimed at describing the transport in a one-dimensional lattice in which the on-site energies are distributed according to a Fibonacci sequence. Within this physical picture, we obtained a novel dynamical process with no counterpart in ordered lattices. Our findings showed that in low-disorder limit, the electron performs spatial Bloch oscillations, generating, in the turning points of its trajectory, composite quasi-particles—namely, polarons. When it comes to highly disordered systems, two strongly localized polarons are formed in the region where the oscillating charge is confined, thus propagating excitations that are present in the lattice.

Keywords

Low-dimensional systems Electron–phonon interactions Bloch Oscillations Polarons 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Brazilian Research Councils CNPq, CAPES, and FINATEC. B.G.E and L.A.R.J gratefully acknowledge the financial support from the Brazilian Research Council FAPDF grants 193.001.556/2017 and 193.001.511/2017. L.A.R.J. also wish to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016).

References

  1. 1.
    Ye XS, Liu YJ, Zeng XH, Wu G (2015) Scientific Reports 5:17358.  https://doi.org/10.1038/srep17358 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Petrovic AP, Ansermet D, Chernyshov D, Hoesch M, Salloum D, Gougeon P, Potel M, Boeri L, Panagopoulos C (2016) Nat Commun 7:12262.  https://doi.org/10.1038/ncomms12262 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jiang H, Cao G, Cao C (2015) Scientific Reports 5:16054.  https://doi.org/10.1038/srep16054 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu G, Shan Ye X, Zeng X, Wu B, Clark WG (2016) Scientific Reports 6:20721.  https://doi.org/10.1038/srep20721 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vasseur G, Fagot-Revurat Y, Sicot M, Kierren B, Moreau L, Malterre D, Cardenas L, Galeotti G, Lipton-Duffin J, Rosei F, Giovannantonio MD, Contini G, Fevre PL, Bertran F, Liang L, Meunier V, Perepichka DF (2016) Nat Commun 7:10235.  https://doi.org/10.1038/ncomms10235 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Segev M, Silberberg Y, Christodoulides DN (2013) Nat Physics 7:197.  https://doi.org/10.1038/nphoton.2013.30 CrossRefGoogle Scholar
  7. 7.
    Longhi S, Gatti D, Valle GD (2015) Scientific Reports 5:13376.  https://doi.org/10.1038/srep13376 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Chem Rev 107:926.  https://doi.org/10.1021/cr050140x CrossRefPubMedGoogle Scholar
  9. 9.
    Owczarek M, Hujsak KA, Ferris DP, Prokofjevs A, Majerz I, Szklarz P, Zhang H, Sarjeant AA, Stern CL, Jakubas R, Hong S, Dravid VP, Stoddart JF (2016) Nat Commun 7:13108.  https://doi.org/10.1038/ncomms13108 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) Nat Commun 7:13651.  https://doi.org/10.1038/ncomms13651 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer AJ, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H (2014) Nature 515:384.  https://doi.org/10.1038/nature13854 CrossRefPubMedGoogle Scholar
  12. 12.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mat 4:455.  https://doi.org/10.1038/nmat1387 CrossRefGoogle Scholar
  13. 13.
    Krogstrup P, Ziino NLB, Chang W, Albrecht SM, Madsen MH, Johnson E, Nygard J, Marcus CM, Jespersen TS (2015) Nat Mat 14:400.  https://doi.org/10.1038/nmat4176 CrossRefGoogle Scholar
  14. 14.
    Yang Y, Chen CC, Scott MC, Ophus C, Xu R, Pryor A, Wu L, Sun F, Theis W, Zhou J, Eisenbach M, Kent PRC, Sabirianov RF, Zeng H, Ercius P, Miao J (2017) Nature 542:542.  https://doi.org/10.1038/nature21042 CrossRefGoogle Scholar
  15. 15.
    Koenraad PM, Flatte ME (2011) Nat Mat 10:91.  https://doi.org/10.1038/nmat2940 CrossRefGoogle Scholar
  16. 16.
    Reserbat-Plantey A, Schadler KG, Gaudreau L, Navickaite G, Guttinger J, Chang D, Toninelli C, Bachtold A, Koppens FHL (2016) Nat Commun 7:10218.  https://doi.org/10.1038/ncomms10218 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lei Y, Deng P, Li J, Lin M, Zhu F, Ng TW, Lee CS, Ong BS (2016) Scientific Reports 6:24476.  https://doi.org/10.1038/srep24476 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carpena P, Bernaola-Galvan P, Ivanov PC, Stanley HE (2002) Nature 418:955.  https://doi.org/10.1038/nature00948 CrossRefPubMedGoogle Scholar
  19. 19.
    Kraus YE, Ringel Z, Zilberberg O (2013) Phys Rev Lett 111:226401.  https://doi.org/10.1103/PhysRevLett.111.226401 CrossRefPubMedGoogle Scholar
  20. 20.
    Vardeny ZV, Nahata A, Agrawal A (2013) Nat Photnics 7:177.  https://doi.org/10.1038/nphoton.2012.343 CrossRefGoogle Scholar
  21. 21.
    Smerdon JA, Young KM, Lowe M, Hars SS, Yadav TP, Hesp D, Dhanak VR, Tsai AP, Sharma HR, McGrath R (2014) Nano Lett. 14:1184.  https://doi.org/10.1021/nl403947b CrossRefPubMedGoogle Scholar
  22. 22.
    Diebel F, Boguslawski M, Lucic NM, Savic DMJ, Denz C (2015) Proc. SPIE 9374:93740.  https://doi.org/10.1117/12.2080113 CrossRefGoogle Scholar
  23. 23.
    Singh K, Saha K, Parameswaran SA, Weld DM (2015) Phys Rev A 92:063426.  https://doi.org/10.1103/PhysRevA.92.063426 CrossRefGoogle Scholar
  24. 24.
    Youi JQ, Ryan J, Xe T, Zeng X, Zhong JX (1991) J Phys Condens Matter 3:7255.  https://doi.org/10.1088/0953-8984/3/38/003 CrossRefGoogle Scholar
  25. 25.
    Katsumoto S, Sano N, Kobayashi SI (1993) Solid State Commun 85:223.  https://doi.org/10.1016/0038-1098(93)90443-Q CrossRefGoogle Scholar
  26. 26.
    Hartmann T, Keck F, Korsch HJ, Mossmann S (2004) New J Phys 6:1.  https://doi.org/10.1088/1367-2630/6/1/002 CrossRefGoogle Scholar
  27. 27.
    Nazareno HN, Lépine Y. (1997) Phys Rev B 55(11):6661.  https://doi.org/10.1103/PhysRevB.55.6661 CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Waschke C, Roskos HG, Schwedler R, Leo K, Kurz H, Köhler K (1993) Phys Rev Lett 70 (21):3319.  https://doi.org/10.1103/PhysRevLett.70.3319 CrossRefPubMedGoogle Scholar
  30. 30.
    Shon NH, Nazareno HN (1992) J Phys Condensed Matt 4(47):L611. http://stacks.iop.org/0953-8984/4/i=47/a=001 CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Stafström S (2010) Chem Soc Rev 39:2484.  https://doi.org/10.1039/b909058b CrossRefPubMedGoogle Scholar
  33. 33.
    Lyssenko GVVG, Loser F, Hasche T, Leo K, Dignam MM, Kohler K (1997) Phy Rev Lett 79:301.  https://doi.org/10.1103/PhysRevLett.79.301 CrossRefGoogle Scholar
  34. 34.
    Xu YL, Fegadolli WS, Gan L, Lu MH, Liu XP, Li ZY, Scherer A, Chen YF (2016) Nat Commun 7:11319.  https://doi.org/10.1038/ncomms11319 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    He Z, Peng S, Cai F, Ke M, Liu Z (2007) Phys Rev E 75:056605.  https://doi.org/10.1103/PhysRevE.76.056605 CrossRefGoogle Scholar
  36. 36.
    Sapienza R, Costantino P, Wiersma D (2003) Phys Rev Lett 91:263902.  https://doi.org/10.1103/PhysRevLett.91.263902 CrossRefPubMedGoogle Scholar
  37. 37.
    Dekorsy T, Bartels A, Kurz H, Kohler K, Hey R, Ploog K (2000) Phys Rev Lett 85:1080.  https://doi.org/10.1103/PhysRevLett.85.1080 CrossRefPubMedGoogle Scholar
  38. 38.
    Dong J, Si W, Wu CQ (2016) Phys Rev E 144:144905.  https://doi.org/10.1063/1.4945778 CrossRefGoogle Scholar
  39. 39.
    Golez D, Bonca J, Vidmar L (2012) Phys Rev B 85:144304.  https://doi.org/10.1103/PhysRevB.85.144304 CrossRefGoogle Scholar
  40. 40.
    Flo J, Averbukh IS (2014) Phys Rev Lett 113:043002.  https://doi.org/10.1103/PhysRevLett.113.043002 CrossRefGoogle Scholar
  41. 41.
    Ciuchi S, Fratini S, Mayou D (2011) Phys Rev Lett 83(R):081202.  https://doi.org/10.1103/PhysRevB.83.081202 CrossRefGoogle Scholar
  42. 42.
    Lakhnoa VD, Korshunova AN (2007) Eur Phys J B 55:85.  https://doi.org/10.1140/epjb/e2007-00045-3 CrossRefGoogle Scholar
  43. 43.
    Li Y, jing Liu X, yong Fu J, sheng Liu D, jie Xie S, mo Mei L (2016) Phys Rev B 74:184303.  https://doi.org/10.1103/PhysRevB.74.184303 CrossRefGoogle Scholar
  44. 44.
    Dominguez-Adame F, Malyshev VA, de Moura FABF, Lyra ML (2003) Phys Rev Lett 91:197402.  https://doi.org/10.1103/PhysRevLett.91.197402 CrossRefPubMedGoogle Scholar
  45. 45.
    Kartashov YV, Konotop VV, Zezyulin DA, Torner L (2016) Phys Rev Lett 117:215301.  https://doi.org/10.1103/PhysRevLett.117.215301 CrossRefPubMedGoogle Scholar
  46. 46.
    Nazareno HN, de Brito PE (2016) Physica B 494:1.  https://doi.org/10.1016/j.physb.2016.04.029 CrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
    da Cunha WF, Junior LAR, Gargano R, e Silva GM (2014) Phys Chem Chem Phys 16:17072.  https://doi.org/10.1039/c4cp02184c CrossRefPubMedGoogle Scholar
  50. 50.
    Su WP, Schrieffer JR, Heeger AJ (1979) Phys Rev Lett 42:1698.  https://doi.org/10.1103/PhysRevLett.42.1698 CrossRefGoogle Scholar
  51. 51.
    Su WP, Schrieffer JR, Heeger AJ (1980) Phys Rev B 22:2099.  https://doi.org/10.1103/PhysRevB.22.2099 CrossRefGoogle Scholar
  52. 52.
    Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Rev Mod Phys 60:781.  https://doi.org/10.1103/RevModPhys.60.781 CrossRefGoogle Scholar
  53. 53.
    Kohmoto M, Kadanoff LP, Tang C (1983) Phys Rev Lett 50(23):1870.  https://doi.org/10.1103/PhysRevLett.50.1870 CrossRefGoogle Scholar
  54. 54.
    de Brito PE, da Silva CAA, Nazareno HN (1995) Phys Rev B 51(9):6096.  https://doi.org/10.1103/PhysRevB.51.6096 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PlanaltinaUniversity of BrasiliaBrasiliaBrazil
  2. 2.International Center for Condensed Matter PhysicsUniversity of BrasiliaBrasiliaBrazil

Personalised recommendations