Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4-O-α-L-rhamnopyranoside through a computational study

  • Rodrigo A. Mendes
  • Shawan K. C. Almeida
  • Iuri N. Soares
  • Cristina A. Barboza
  • Renato G. Freitas
  • Alex Brown
  • Gabriel L. C. de SouzaEmail author
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


In this work, we present a computational study on the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside (Compound M3) and myricetin 4-O-α-L-rhamnopyranoside (Compound M4). Structural parameters, bond dissociation enthalpies (BDEs), ionization potentials (IPs), proton dissociation enthalpies (PDEs), proton affinities (PAs), and electron transfer enthalpies (ETEs), which are properties connected with different mechanisms related to antioxidant activity, were determined using density functional theory (DFT) with B3LYP, LC-ωPBE, M06-2X, and BMK functionals along with the 6-311G(d,p) and 6-311+G(d,p) basis sets in the gas phase, water, and pentylethanoate. The values obtained were compared with results previously available in the literature for myricetin (the parent molecule and a well-known antioxidant) and myricetin 3,4-di-O-α-L-rhamnopyranoside (Compound M3,4). As the BDEs are considerably lower than the IPs, the HAT mechanism is preferred over SET for the compounds M3 and M4. The present study indicates Compound M3 as having its lowest bond dissociation enthalpy from the several different OH groups with similar value to the lowest for myricetin (74.72 kcal/mol versus 74.8 kcal/mol, respectively, at the B3LYP/6-311G(d,p) level of theory in the gas phase) and, thus, presenting antioxidant potential as good as its parent molecule. On the other hand, Compound M4 presented 78.97 kcal/mol as the lowest BDE at the B3LYP/6-311G(d,p) level of theory in the gas phase, that is very close to the 78.34 kcal/mol computed using the same approach for Compound M3,4. Therefore, the present investigation indicated Compound M4 as being a slightly inferior antioxidant (with antioxidant potential comparable to Compound M3,4) than Compound M3. In addition, the inclusion of the sugar moiety studied here in the position 4-ArOH of myricetin seems to have a more marked impact (downward) on the antioxidant activity than the glycosylation in the position 3-ArOH.


Antioxidant potential BDEs IPs PDEs PAs ETEs Myricetin 3-O-α-L-rhamnopyranoside Myricetin 4-O-α-L-rhamnopyranoside Density functional theory (DFT) 



The Brazilian agency CNPq funded this work (Process number: 306266/2016-4). AB thanks the Natural Sciences and Engineering Research Council of Canada for funding (NSERC - Discovery Grant). This research was supported in part by PL-Grid Infrastructure.

Supplementary material

894_2019_3959_MOESM1_ESM.pdf (1 mb)
(PDF 1.04 MB)


  1. 1.
    Stavrou IJ, Christou A, Kapnissi-Christodoulou CP (2018) Polyphenols in carobs: a review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem 269:355–174CrossRefGoogle Scholar
  2. 2.
    Minnaar P, Nyobo L, Jolly N, Ntushelo N, Meiring S (2018) Anthocyanins and polyphenols in Cabernet Franc wines produced with Saccharomyces cerevisiae and Torulaspora delbrueckii yeast strains: spectrophotometric analysis and effect on selected sensory attributes. Food Chem 268:287–291CrossRefGoogle Scholar
  3. 3.
    Bilgin M, Elhussein EAA, Ozyurek M, Guclu K, Sahin S (2018) Optimizing the extraction of polyphenols from Sideritis montana L. using response surface methodology. J Pharm Biomed Anal 158:137–143CrossRefGoogle Scholar
  4. 4.
    Liu SW, You L, Zhao YX, Chang XD (2018) Hawthorn polyphenol extract inhibits UVB-induced skin photoaging by regulating MMP expression and type I procollagen production in mice. J Agric Food Chem 66:8537–8546CrossRefGoogle Scholar
  5. 5.
    Riaz A, Lei SC, Akhtar HMS, Wan P, Chen D, Jabbar S, Abid M, Hashim MM, Zeng XX (2018) Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 114:547–555CrossRefGoogle Scholar
  6. 6.
    Silva CP, Sampaio GR, Freitas RAMS, Torres EAFS (2018) Polyphenols from guarana after in vitro digestion: evaluation of bioaccessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem 267:405–409CrossRefGoogle Scholar
  7. 7.
    Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897CrossRefGoogle Scholar
  8. 8.
    Guajardo-Flores D, Serna-Saldivar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.) Food Chem 141:1497–1503CrossRefGoogle Scholar
  9. 9.
    Plaza M, Kariuki J, Turner C (2014) Quantification of individual phenolic compounds: contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem 62:409–418CrossRefGoogle Scholar
  10. 10.
    Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  11. 11.
    Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:92–96CrossRefGoogle Scholar
  12. 12.
    Zhang XC, Chen F, Wang MF (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62:1643–1648CrossRefGoogle Scholar
  13. 13.
    Aswathy VV, Alper-Hayta S, Yalcin G, Mary YS, Panicker CY, Jojo PJ, Kaynak-Onurdag F, Armaković S, Armaković SJ, Yildiz I, Alsenoy CV (2017) Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures. J Mol Struct 1141:495–511CrossRefGoogle Scholar
  14. 14.
    Belščak-Cvitanović A, Durgo K, Bušić A, Franekić J, Komes D (2014) Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (HEp2) cells. J Med Food 17:206–217CrossRefGoogle Scholar
  15. 15.
    Malig TC, Ashkin MR, Burman AL, Barday M, Heyne BJ, Back TG (2017) Comparison of free-radical inhibiting antioxidant properties of carvedilol and its phenolic metabolites. Med Chem Comm 8:606–615CrossRefGoogle Scholar
  16. 16.
    Ren F, Reilly K, Kerry JP, Gaffney M, Hossain M, Rai DK (2017) Higher antioxidant activity, total flavonols, and specific quercetin glucosides in two different onion (Allium cepa L.) varieties grown under organic production: results from a 6-year field study. J Agric Food Chem 65:5122–5132CrossRefGoogle Scholar
  17. 17.
    Li X, Liu J, Lin J, Wang T, Huang J, Lin Y, Chen D (2016) Protective effects of dihydromyricetin against OH-induced mesenchymal stem cells damage and mechanistic chemistry. Molecules 21:604CrossRefGoogle Scholar
  18. 18.
    Tedesco I, Carbone V, Spagnuolo C, Minasi P, Russo GL (2015) Identification and quantification of flavonoids from two southern Italian cultivars of Allium cepa L., Tropea (red onion) and Montoro (copper onion), and their capacity to protect human erythrocytes from oxidative stress. J Agric Food Chem 63:5229–5238CrossRefGoogle Scholar
  19. 19.
    Fliniaux O, Corbin C, Ramsay A, Renouard S, Beejmohun V, Doussot J, Falguieres A, Ferroud C, Lamblin F, Laine E, Roscher A, Grand E, Mesnard F, Hano C (2014) Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules 19:3025–3037CrossRefGoogle Scholar
  20. 20.
    Guajardo-Flores D, Serna-Saldivar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem 141:1497–1503CrossRefGoogle Scholar
  21. 21.
    Wang C, Yin YH, Wei YJ, Shi ZQ, Liu JQ, Liu LF, Xin GZ (2017) Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system. J Chromatogr A 1515:100–108CrossRefGoogle Scholar
  22. 22.
    Chirug L, Okun Z, Ramon O, Shpigelman A (2018) Iron ions as mediators in pectin-flavonols interactions. Food Hydrocoll 84:441–449CrossRefGoogle Scholar
  23. 23.
    Fan GH, Zhu S, Xu H (2018) Density-functional theory study of the interaction mechanism and optical properties of flavonols on the boron nitride nanotubes. Int J Quantum Chem 118:e25514CrossRefGoogle Scholar
  24. 24.
    Falantin C, Moncomble A, Le Person A, Cornard JP (2017) Chalcogen substitution: effect of oxygen-by-sulfur exchange on structural and spectroscopic properties of flavonols. Spectrochim Acta A 187:49–60CrossRefGoogle Scholar
  25. 25.
    de Souza GLC, de Oliveira LMF, Vicari RG, Brown A (2016) A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1→3) linkage flavonols. J Mol Model 22:100–109CrossRefGoogle Scholar
  26. 26.
    Mendes RA, e Silva BLS, Takeara R, Freitas RG, Brown A, de Souza GLC (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101CrossRefGoogle Scholar
  27. 27.
    Maciel EN, Almeida SKC, da Silva SC, de Souza GLC (2018) Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 24:218CrossRefGoogle Scholar
  28. 28.
    Sandoval-Yanez C, Mascayano C, Martinez-Araya JI (2018) A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper-softness. Arab J Chem 11:554–563CrossRefGoogle Scholar
  29. 29.
    Garcia G, Atilhan M, Aparicio S (2016) Flavonol-carbon nanostructure hybrid systems: a DFT study on the interaction mechanism and UV/Vis features. Phys Chem Chem Phys 18:4760–4771CrossRefGoogle Scholar
  30. 30.
    Yao Y, Lim G, Xie Y, Ma P, Li G, Meng Q, Wu T (2014) Preformulation studies of myricetin: a natural antioxidant flavonoid. Pharmazie 69:19–26PubMedGoogle Scholar
  31. 31.
    Gordon MH, Roedig-Penman A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85CrossRefGoogle Scholar
  32. 32.
    Chobot V, Hadacek F (2011) Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep 16:242–247CrossRefGoogle Scholar
  33. 33.
    Nasri I, Chawech R, Girardi C, Mas E, Ferrand A, Vergnolle N, Fabre N, Mezghani-Jarraya R, Racaud-Sultan C (2017) Anti-inflammatory and anticancer effects of flavonol glycosides from Diplotaxis harra through GSK3 beta regulation in intestinal cells. Pharm Biol 55:124–131CrossRefGoogle Scholar
  34. 34.
    Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861CrossRefGoogle Scholar
  35. 35.
    Grzesik M, Bartosz G, Dziedzic A, Narog D, Namiesnik J, Sadowska-Bartosz I (2018) Antioxidant properties of ferrous flavanol mixtures. Food Chem 268:567–576CrossRefGoogle Scholar
  36. 36.
    Giacomelli C, Miranda F da S, Goncalves NS, Spinelli A (2004) Antioxidant activity of phenolic and related compounds: a density functional theory study on the O-H bond dissociation enthalpy. Redox Rep 9:263–269CrossRefGoogle Scholar
  37. 37.
    Galato D, Giacomelli C, Ckless K, Susin MF, Vale RM4R, Spinelli A (2001) Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Rep 6:243–250CrossRefGoogle Scholar
  38. 38.
    Chen Y, Xiao H, Zheng J, Liang G (2015) Structure–thermodynamics–antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS One 10:e0121276CrossRefGoogle Scholar
  39. 39.
    Zheng Y-Z, Chen D-F, Deng G, Guo R, Fu Z-M (2018) The surrounding environments on the structure and antioxidative activity of luteolin. J Mol Model 24:149CrossRefGoogle Scholar
  40. 40.
    Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709CrossRefGoogle Scholar
  41. 41.
    Musialik M, Litwinienko G (2005) Scavenging of dpph radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7:4951– 4954CrossRefGoogle Scholar
  42. 42.
    Zhang Z, ElSohly HN, Li X C, Khan SI, Broedel SE Jr, Raulli RE, Cihlar RL, Burandt C, Walker LA (2003) Phenolic compounds from Nymphaea odorata. J Nat Prod 66:548–550CrossRefGoogle Scholar
  43. 43.
    Isidoro MM, da Silva MFGF, Fernandes JB, Vieira PC, Arruda AC, Silva SC (2012) Phytochemical and chemosystematic studies of Euxylophora paraensis (Rutaceae). Quim Nova 35:2119–2124CrossRefGoogle Scholar
  44. 44.
    Sidana J, Neeradi D, Choudhary A, Singh S, Foley WJ, Singh IP (2013) Antileishmanial polyphenols from Corymbia maculata. J Chem Sci 125:765–775CrossRefGoogle Scholar
  45. 45.
    Kishore N, Twilley D, Blom van Staden A, Verma P, Singh B, Cardinali G, Kovacs D, Picardo M, Kumar V, Lall N (2018) Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J Nat Prod 81:49–56CrossRefGoogle Scholar
  46. 46.
    Sadasivam K, Kumaresan R (2011) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds—a DFT study. Spectrochim Acta A 79:282–293CrossRefGoogle Scholar
  47. 47.
    Li M-J, Liu L, Fu Y, Guo Q-X (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J Mol Struct: THEOCHEM 815:1–9CrossRefGoogle Scholar
  48. 48.
    Mendes RA, Almeida SKC, Soares IN, Barboza CA, Freitas RG, Brown A, de Souza GLC (2018) A computational investigation on the antioxidant potential of myricetin 3,4-di-O-α-L-rhamnopyranoside. J Mol Model 24:133CrossRefGoogle Scholar
  49. 49.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  50. 50.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  51. 51.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRefGoogle Scholar
  52. 52.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  53. 53.
    Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109CrossRefGoogle Scholar
  54. 54.
    Rassolov V, Pople JA, Ratner M, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976– 984CrossRefGoogle Scholar
  55. 55.
    Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–946CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  57. 57.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  58. 58.
    Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  59. 59.
    Boese AD, Martin JML (2004) Development of novel density functionals for thermochemical kinetics. J Chem Phys 121:3405CrossRefGoogle Scholar
  60. 60.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110CrossRefGoogle Scholar
  61. 61.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  62. 62.
    Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420–6424CrossRefGoogle Scholar
  63. 63.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin K N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01Google Scholar
  64. 64.
    Vojta D, Dominkocić K, Miljanić S, Spanget-Larsen J (2017) Intramolecular hydrogen bonding in myricetin and myricitrin. Quantum chemical calculations and vibrational spectroscopy. J Mol Struct 1131:242–249CrossRefGoogle Scholar
  65. 65.
    Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970CrossRefGoogle Scholar
  66. 66.
    Martinez A (2009) Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances. J Phys Chem B 113:4915–4921CrossRefGoogle Scholar
  67. 67.
    Johns JR, Platts JA (2014) Theoretical insight into the antioxidant properties of melatonin and derivatives. Org Biomol Chem 12:7820CrossRefGoogle Scholar
  68. 68.
    Justino GC, Vieira AJSC (2010) Antioxidant mechanisms of quercetin and myricetin in the gas phase and in solution—a comparison and validation of semi-empirical methods. J Mol Model 16:863–876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Institute of PhysicsPolish Academy of SciencesWarsawPoland
  3. 3.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations