Abstract
Modern materials discovery and design studies often rely on the computational screening of large databases. Complementing experimental databases, virtual databases are thereby increasingly established through the first-principles calculation of computationally inexpensive, but for a given application, decisive microscopic quantities of the system. These so-called descriptors are calculated for vast numbers of candidate materials. In general, the sheer volume of datapoints generated in such studies precludes an in depth human analysis. To this end, smart visualization techniques, based e.g., on so-called chemical space networks (CSN), have been developed to extract general design rules connecting structural modifications to changes in the target functionality. In this work, we generate and visualize the CSN of possible crystalline organic semiconductors based on an in-house database of > 64,000 molecular crystals that we extracted from the exhaustive Cambridge Structural Database and for which we computed prominent charge-mobility descriptors. Our CSN thereby links clusters of molecular crystals based on the chemical similarity of the scaffolds of their molecular building blocks and thus groups communities of similar molecules. Including each cluster’s median descriptor values, the CSN visualization not only reproduces known trends of good organic semiconductors but also allows us to extract general design rules for organic molecular scaffolds. Finally, the local environment of each scaffold in our visualization shows how thoroughly its local chemical space has already been explored synthetically. Of special interest here are those clusters with promising descriptor values, yet with little or no connections in the sampled chemical space, as these offer the most room for scaffold optimization.
This is a preview of subscription content, access via your institution.




References
Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha D-G, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong SI, Baldo M, Adams RP, Aspuru-Guzik A (2016) vol 15
Agrawal A, Choudhary A (2016) APL Mater 4:053208
Lo Y-C, Senese S, Li C-M, Hu Q, Huang Y, Damoiseaux R, Torres JZ (2015) PLoS Comput Biol 11:1
Ferguson A, Hachmann J (2018) Mol Syst Des Eng 3:429
Isayev O, Fourches D, Muratov EN, Oses C, Rasch K, Tropsha A, Curtarolo S (2015) Chem Mater 27:735
Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849
Akimov AV, Prezhdo OV (2015) Chem Rev 115:5797
Schober C, Reuter K, Oberhofer H (2016) J Phys Chem Lett 7:3973
Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L (2010) Med Chem Commun 1:30
Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Science 323:892
Barabási A-L, Gulbahce N, Loscalzo J (2010) Nat Rev Gen 12:56 EP
Cotacallapa M, Hase MO (2016) J Phys A 49:065001
Ideker T, Nussinov R (2017) PLOS Comput Biol 13:1
Barabási A, Psfai M (2016) Network science. Cambridge University Press
Hopkins AL (2008) Nat Chem Biol. 4:682 EP
Shelat AA, Guy RK (2007) Nat Chem Biol 3:442
Kontijevskis A (2017) J Chem Inf Model 57:680
Sandefur CI, Mincheva M, Schnell S (2013) Mol BioSyst 9:2189
Simm GN, Reiher M (2017) J Chem Theory Comput 13:6108
Opassi G, Ges A, Massarotti A (2018) Drug Discov Today 23:565
Osolodkin DI, Radchenko EV, Orlov AA, Voronkov AE, Palyulin VA, Zefirov NS (2015) Expert Opin Drug Discov 10:959
Gütlein M, Karwath A, Kramer S (2014) J Cheminform 6:41
Gonzlez-Medina M, Medina-Franco JL (2017) J Chem Inf Model 57:1735
Maggiora GM, Bajorath J (2014) J Comput Aided Mol Des 28:795
Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J (2008) J Med Chem 51:6075
Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Nature 475:364
Stavrinidou E, Gabrielsson R, Gomez E, Crispin X, Nilsson O, Simon DT, Berggren M (2015) Sci Adv 1:e1501136
Xu J, Wang S, Wang G-JN, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig VR, To JW et al (2017) Science 355:59
Nikolka M, Nasrallah I, Rose B, Ravva MK, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A et al (2017) Nat Mater 16:356
Wang C, Dong H, Jiang L, Hu W (2018) Chem Soc Rev 47:422
Fischer JR, Lessel U, Rarey M (2010) J Chem Inf Model 50:1
Bian Y, Xie X-QS (2018) AAPS J 20:59
Hall RJ, Murray CW, Verdonk ML (2017) J Med Chem 60:6440
Misra M, Andrienko D, Baumeier B, Faulon J-L, von Lilienfeld OA (2011) J Chem Theory Comput 7:2549
Sahu H, Rao W, Troisi A, Ma H (2018) Adv Energy Mater 8:1801032
Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sánchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) Nat Commun, 2
Moral M, Garzón-Ruiz A, Castro M, Canales-Vázquez J, Sancho-García JC (2017) J Phys Chem C 121:28249
Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339
Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) Sci Rep 2:754 EP
Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2008) J Am Chem Soc 130:732
Kunkel C, Schober C, Margraf JT, Reuter K, Oberhofer H (2018) submitted
Allen FH (2002) Acta Crystallogr B 58:380
Oberhofer H, Reuter K, Blumberger J (2017) Chem Rev 117:10319
Marcus RA (1956) J Chem Phys 24:966
Marcus RA (1993) Rev Mod Phys 65:599
Schober C, Reuter K, Oberhofer H (2016) J Chem Phys 144:054103
Nelsen SF, Blackstock SC, Kim Y (1987) J Am Chem Soc 109:677
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Comp Phys Commun 180:2175
Zhang IY, Ren X, Rinke P, Blum V, Scheffler M (2013) J Phys 15:123033
Becke AD (1988) Phys Rev A 38:3098
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
Hu Y, Stumpfe D, Bajorath J (2016) J Med Chem 59:4062
Bemis GW, Murcko MA (1996) J Med Chem 39:2887
Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112:2208
Jiang W, Li Y, Wang Z (2013) Chem Soc Rev 42:6113
Landrum G (2018) RDKit: open-source cheminformatics, http://www.rdkit.org [Online; Accessed 07 Aug 2018]
Python software foundation. Python language reference, version 2.7. available at http://www.python.org
Ertl P (2014) J Chem Inf Model 54:1617
Rabal O, Amr FI, Oyarzabal J (2015) J Chem Inf Model 55:1
Vogt M, Stumpfe D, Maggiora GM, Bajorath J (2016) J Comput Aided Mol Des 30:191
Carhart RE, Smith DH, Venkataraghavan R (1985) J Chem Inf Comput Sci 25:64
Rogers D, Hahn M (2010) J Chem Inf Model 50:742
Bastian M, Heymann S, Jacomy M (2009) In: International AAAI conference on weblogs and social media
Jacomy M, Venturini T, Heymann S, Bastian M (2014) PLOS ONE 9:1
ChemAxon (2017) Marvin 17.5.0, http://www.chemaxon.com, [Online; Accessed 07 Aug 2018]
Bokeh Development Team (2018) Bokeh: Python library for interactive visualization
Kunkel C, Schober C, Oberhofer H, Reuter K (2018) A chemical space network for organic electronics, https://mediatum.ub.tum.de/147052, [Online, published 22 Dec 2018]
Webcsd (2019) https://www.ccdc.cam.ac.uk/structures/, [Online, Accessed 14 Jan 2019]
Agrafiotisand DK, Wiener JJM (2010) J Med Chem 53:5002
Varin T, Schuffenhauer A, Ertl P, Renner S (2011) J Chem Inf Model 51:1528
Shelat AA, Guy RK (2007) Nat Chem Biol 3:442 EP
Lin Y, Li Y, Zhan X (2012) Chem Soc Rev 41:4245
Kitamura M, Arakawa Y (2008) J Phys Condens Matter 20:184011
de la Vega León A, Bajorath J (2016) Future Med Chem 8:1769
Lin Y, Fan H, Li Y, Zhan X (2012) Adv Mater 24:3087
Canevet D, Sallé M., Zhang G, Zhang D, Zhu D (2009) Chem Commun, 2245
Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) J Am Chem Soc 135:6724
Reig M, Bagdziunas G, Volyniuk D, Grazulevicius JV, Velasco D (2017) Phys Chem Chem Phys 19:6721
Acknowledgements
We acknowledge support from the Solar Technologies Go Hybrid initiative of the State of Bavaria and the Leibniz Supercomputing Centre for high-performance computing time at the SuperMUC facility. We further acknowledge support by Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE), GSC 81.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kunkel, C., Schober, C., Oberhofer, H. et al. Knowledge discovery through chemical space networks: the case of organic electronics. J Mol Model 25, 87 (2019). https://doi.org/10.1007/s00894-019-3950-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-019-3950-6
Keywords
- Organic electronics
- Materials design
- Chemical space networks