Polaron formation at impurity-endowed lattices

  • Paulo Eduardo de BritoEmail author
  • Luiz Antonio Ribeiro Junior
  • Bernhard Georg Enders
  • Hugo Nicolas Nazareno
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


In semiconducting materials, lattice deformities can play the role of localizing the charge carriers. Polarons are understood as attractive interactions between charge and lattice deformations that result in a single structure composed by a charged particle surrounded by a cloud of phonons. These composite quasi-particles are vital structures when it comes to charge transport mechanism in a wide range of semiconducting materials. In the present work, we investigated the drift of an electron and the subsequent polaron formation in impurity-endowed lattices in the framework of a one-dimensional tight-binding model. Primarily, we scrutinized electronic dynamics in lattices containing two sources of disorders: a barrier and a well. The dispersion of the gamma distribution gives an idea of the extension of the disorder region in the lattice. We studied the dynamics of an injected electron interacting with the lattice vibrations where we consider, for a given degree of disorder, different velocities of the incoming particle. Our results show that there are different kinds of propagation/localization for the electron according to the assumed initial velocity. Importantly, we obtained the critical values for the impurity strength to promote the quenching of Bloch oscillations and the localization of polarons.


Low-dimensional lattices Bloch oscillations Impurity Polarons 



The authors gratefully acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES. L.A.R.J and B.G.E gratefully acknowledge the financial support from the Brazilian Research Council FAPDF grants 193.001.556/2017 and 193.001.511/2017 and also wish to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016).


  1. 1.
    Landau LD (1965). In: ter Haar D (ed) Collected papers of L.D. Landau. Pergamon Press, Oxford, pp 67–68Google Scholar
  2. 2.
    Landau LD, Pekar SI (1965). In: ter Haar D (ed) Collected papers of L.D. Landau. Pergamon Press, Oxford, p 478Google Scholar
  3. 3.
    Cohen MH, Economou EN, Soukoulis CM (1983) Phys Rev Lett 51:1202. CrossRefGoogle Scholar
  4. 4.
    Economou EN, Yanovitskii O, Fraggis T (1993) Phys Rev B 47:740. CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Nazareno HN, Lépine Y (1997) Phys Rev B 55(11):6661. CrossRefGoogle Scholar
  7. 7.
    Lyssenko GVVG, Loser F, Hasche T, Leo K, Dignam MM, Kohler K (1997) Phy Rev Lett 79:301. CrossRefGoogle Scholar
  8. 8.
    Xu YL, Fegadolli WS, Gan L, Lu MH, Liu XP, Li ZY, Scherer A, Chen YF (2016) Nat Commun 7:11319. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    He Z, Peng S, Cai F, Ke M, Liu Z (2007) Phys Rev E 75:056605. CrossRefGoogle Scholar
  10. 10.
    Sapienza R, Costantino P, Wiersma D (2003) Phys Rev Lett 91:263902. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hartmann T, Keck F, Korsch HJ, Mossmann S (2004) J New Phys 6:1. CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Golez D, Bonca J, Vidmar L (2012) Phys Rev B 85:144304. CrossRefGoogle Scholar
  14. 14.
    Flo J, Averbukh IS (2014) Phys Rev Lett 113:043002. CrossRefGoogle Scholar
  15. 15.
    Ciuchi S, Fratini S, Mayou D (2011) Phys Rev Lett 83(R):081202. CrossRefGoogle Scholar
  16. 16.
    Li Y, Jing Liu X, Yong Fu J, Sheng Liu D, Jie Xie S, Mo Mei L (2016) Phys Rev B 74:184303. CrossRefGoogle Scholar
  17. 17.
    Dominguez-Adame F, Malyshev VA, de Moura FABF, Lyra ML (2003) Phys Rev Lett 91:197402. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kartashov YV, Konotop VV, Zezyulin DA, Torner L (2016) Phys Rev Lett 117:215301. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nazareno HN, de Brito PE (2016) Physica B 494:1. CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Junior LAR, da Cunha WF, Gargano R, e Silva GM (2013) J Chem Phys 139:174903. CrossRefGoogle Scholar
  23. 23.
    Ribeiro LA, Neto PHO, da Cunha WF, Roncaratti LF, Gargano R, da Silva Filho DA, e Silva GM (2011) J Chem Phys 135:224901. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Planaltina (PPG-CIMA)University of BrasíliaBrasíliaBrazil
  2. 2.International Center for Condensed Matter PhysicsUniversity of BrasíliaBrasíliaBrazil
  3. 3.Faculty of PlanaltinaUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations