Geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters

Abstract

The geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters were systematically investigated by performing spin-polarized density functional theory calculations. We found that doping Bn clusters with Co significantly changed their structures. Co2B2 and Co2B5 had planar and quasi-planar structures, while Co2B3 and Co2B7 had bipyramidal structures. Co2B10 had a tubular structure. In analyses of the dissociation energies and the second-order differences in total energy of the clusters, Co2B3 and Co2B7 were identified as magic-number (i.e., unusually stable) clusters. All of the Co2Bn clusters had nonzero spin magnetic moments except for Co2B10. Among the Co2Bn clusters, Co2B and Co2B7 had the largest spin magnetic moments (3 μB). The 3d orbital of Co was the main contributor to the spin magnetic moments of the Co2Bn clusters. The two Co atoms exhibited ferromagnetic alignment in all of the Co2Bn clusters except for Co2B9.

The magic-number cluster Co2B7 has bipyramidal structure and the Co2B10 has tubular structure

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reference

  1. 1.

    Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang L-S (2003) Angew Chem Int Ed 42:6004–6008

  2. 2.

    Kiran B, Bulusu S, Zhai H-J, Yoo S, Zeng XC, Wang L-S (2005) Proc Natl Acad Sci U S A 102:961–964

  3. 3.

    Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S (2008) J Am Chem Soc 130:7244–7246

  4. 4.

    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) Coord Chem Rev 250:2811–2866

  5. 5.

    Li W-L, Chen Q, Tian W-J, Bai H, Zhao Y-F, Hu H-S, Li J, Zhai H-J, Li S-D, Wang L-S (2014) J Am Chem Soc 136:12257–12260

  6. 6.

    Chen Q, Tian W-J, Feng L-Y, Lu H-G, Mu Y-W, Zhai H-J, Li S-D, Wang L-S (2017) Nanoscale 9:4550–4557

  7. 7.

    Wang Y-J, Zhao X-Y, Chen Q, Zhai H-J, Li S-D (2015) Nanoscale 7:16054–16060

  8. 8.

    Chen Q, Zhang S-Y, Bai H, Tian W-J, Gao T, Li H-R, Miao C-Q, Mu Y-W, Lu H-G, Zhai H-J, Li S-D (2015) Angew Chem Int Ed 54:8160–8164

  9. 9.

    Zhai H-J, Wang L-S, Zubarev DY, Boldyrev AI (2006) J Phys Chem A 110:1689–1693

  10. 10.

    Zhang L-N, Jia J, Wu H-S (2015) Chem Phys 459:131–136

  11. 11.

    Tam NM, Pham HT, Duong LV, Pham-Ho MP, Nguyen MT (2015) Phys Chem Chem Phys 17:3000–3003

  12. 12.

    Yang G, Cui W, Zhu X, Yue R (2014) J Mol Model 20:1–20

  13. 13.

    Jia J, Li X, Li Y, Ma L, Wu H-S (2014) Comput Theor Chem 1027:128–134

  14. 14.

    Cheng S-B, Berkdemir C, Castleman AW (2014) Phys Chem Chem Phys 16:533–539

  15. 15.

    Xie L, Li WL, Romanescu C, Huang X, Wang LS (2013) J Chem Phys 138:034308

  16. 16.

    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2013) Acc Chem Res 46:350–358

  17. 17.

    Li W-L, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang L-S (2012) J Am Chem Soc 134:165–168

  18. 18.

    Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2013) J Chem Phys 138:134315

  19. 19.

    Jia J, Ma L, Wang J-F, Wu H-S (2013) J Mol Model 19:3255–3261

  20. 20.

    Wang J, Jia J, Ma L, Wu H (2012) Acta Chim Sin 70:1643

  21. 21.

    Li W-L, Ivanov AS, Federič J, Romanescu C, Černušák I, Boldyrev AI, Wang L-S (2013) J Chem Phys 139:104312

  22. 22.

    Romanescu C, Galeev TR, Sergeeva AP, Li W-L, Wang L-S, Boldyrev AI (2012) J Organomet Chem 721–722:148–154

  23. 23.

    Li W-L, Romanescu C, Piazza ZA, Wang L-S (2012) Phys Chem Chem Phys 14:13663–13669

  24. 24.

    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2011) Angew Chem Int Ed 50:9334–9337

  25. 25.

    Yao J-G, Wang X-W, Wang Y-X (2008) Chem Phys 351:1–6

  26. 26.

    Xu C, Cheng L, Yang J (2014) J Chem Phys 141:124301

  27. 27.

    Boustani I (1995) Chem Phys Lett 240:135–140

  28. 28.

    Boustani I (1997) Phys Rev B 55:16426–16438

  29. 29.

    Boustani I (1997) Surf Sci 370:355–363

  30. 30.

    Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) J Phys Chem A 114:994

  31. 31.

    Hikmat BC, Tunna B, Rajendra RZ (2012) J Phys B Atomic Mol Phys 45:225101

  32. 32.

    Chacko S, Kanhere DG, Boustani I (2003) Phys Rev B 68:035414

  33. 33.

    Tai TB, Nguyen MT (2015) Phys Chem Chem Phys 17:13672–13679

  34. 34.

    Tai TB, Duong LV, Pham HT, Mai DTT, Nguyen MT (2014) Chem Commun 50:1558–1560

  35. 35.

    Lv J, Wang Y, Zhu L, Ma Y (2014) Nanoscale 6:11692–11696

  36. 36.

    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2012) Acc Chem Res 46:350–358

  37. 37.

    Jia J, Wang JF, Wu HS (2013) J Mol Model 19:3255–3261

  38. 38.

    Liu X, Zhao G-F, Guo L-J, Jing Q, Luo Y-H (2007) Phys Rev A 75:063201

  39. 39.

    Li W-L, Xie L, Jian T, Romanescu C, Huang X, Wang L-S (2014) Angew Chem 126:1312–1316

  40. 40.

    Wang Z-Y, Kang W-L, Jia J, Wu H-S (2014) Acta Phys Sin 63:233102

  41. 41.

    Hao A-Q, Xu B-Z, Jia J (2018) Mater Chem Phys 205:1–8

  42. 42.

    Pham HT, Nguyen MT (2015) Phys Chem Chem Phys 17:17335–17345

  43. 43.

    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

  44. 44.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

  45. 45.

    Becke AD (1993) J Chem Phys 98:5648–5652

  46. 46.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

  47. 47.

    Neese F (2017) WIREs Comput Mol Sci 8:e1327

  48. 48.

    Lv J, Wang Y, Zhu L, Ma Y (2012) J Chem Phys 137:084104

  49. 49.

    Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Phys Rev B 76:014429

  50. 50.

    Kant A, Strauss B (1964) J Chem Phys 41:3806–3808

  51. 51.

    Knizia G (2013) J Chem Theory Comput 9:4834–4843

  52. 52.

    Böyükata M, Güvenç ZB (2011) J Alloys Compd 509:4214–4234

  53. 53.

    Tai TB, Nguyen MT (2010) Chem Phys 375:35–45

  54. 54.

    Kittel C (2005) Introduction to solid state physics. Wiley, New York

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21571119) and the Program for New Century Excellent Talents in University (NCET-12-1035).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2141 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, A., Xue, H. & Jia, J. Geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters. J Mol Model 25, 27 (2019). https://doi.org/10.1007/s00894-018-3906-2

Download citation

Keywords

  • Co2Bn clusters
  • DFT calculation
  • Structure and stability
  • Magnetic property