Advertisement

Geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters

  • Aiqin Hao
  • Haibo Xue
  • Jianfeng JiaEmail author
Original Paper
  • 95 Downloads

Abstract

The geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters were systematically investigated by performing spin-polarized density functional theory calculations. We found that doping Bn clusters with Co significantly changed their structures. Co2B2 and Co2B5 had planar and quasi-planar structures, while Co2B3 and Co2B7 had bipyramidal structures. Co2B10 had a tubular structure. In analyses of the dissociation energies and the second-order differences in total energy of the clusters, Co2B3 and Co2B7 were identified as magic-number (i.e., unusually stable) clusters. All of the Co2Bn clusters had nonzero spin magnetic moments except for Co2B10. Among the Co2Bn clusters, Co2B and Co2B7 had the largest spin magnetic moments (3 μB). The 3d orbital of Co was the main contributor to the spin magnetic moments of the Co2Bn clusters. The two Co atoms exhibited ferromagnetic alignment in all of the Co2Bn clusters except for Co2B9.

Graphical abstract

The magic-number cluster Co2B7 has bipyramidal structure and the Co2B10 has tubular structure

Keywords

Co2Bn clusters DFT calculation Structure and stability Magnetic property 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21571119) and the Program for New Century Excellent Talents in University (NCET-12-1035).

Supplementary material

894_2018_3906_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2141 kb)

Reference

  1. 1.
    Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang L-S (2003) Angew Chem Int Ed 42:6004–6008Google Scholar
  2. 2.
    Kiran B, Bulusu S, Zhai H-J, Yoo S, Zeng XC, Wang L-S (2005) Proc Natl Acad Sci U S A 102:961–964Google Scholar
  3. 3.
    Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S (2008) J Am Chem Soc 130:7244–7246Google Scholar
  4. 4.
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) Coord Chem Rev 250:2811–2866Google Scholar
  5. 5.
    Li W-L, Chen Q, Tian W-J, Bai H, Zhao Y-F, Hu H-S, Li J, Zhai H-J, Li S-D, Wang L-S (2014) J Am Chem Soc 136:12257–12260Google Scholar
  6. 6.
    Chen Q, Tian W-J, Feng L-Y, Lu H-G, Mu Y-W, Zhai H-J, Li S-D, Wang L-S (2017) Nanoscale 9:4550–4557Google Scholar
  7. 7.
    Wang Y-J, Zhao X-Y, Chen Q, Zhai H-J, Li S-D (2015) Nanoscale 7:16054–16060Google Scholar
  8. 8.
    Chen Q, Zhang S-Y, Bai H, Tian W-J, Gao T, Li H-R, Miao C-Q, Mu Y-W, Lu H-G, Zhai H-J, Li S-D (2015) Angew Chem Int Ed 54:8160–8164Google Scholar
  9. 9.
    Zhai H-J, Wang L-S, Zubarev DY, Boldyrev AI (2006) J Phys Chem A 110:1689–1693Google Scholar
  10. 10.
    Zhang L-N, Jia J, Wu H-S (2015) Chem Phys 459:131–136Google Scholar
  11. 11.
    Tam NM, Pham HT, Duong LV, Pham-Ho MP, Nguyen MT (2015) Phys Chem Chem Phys 17:3000–3003Google Scholar
  12. 12.
    Yang G, Cui W, Zhu X, Yue R (2014) J Mol Model 20:1–20Google Scholar
  13. 13.
    Jia J, Li X, Li Y, Ma L, Wu H-S (2014) Comput Theor Chem 1027:128–134Google Scholar
  14. 14.
    Cheng S-B, Berkdemir C, Castleman AW (2014) Phys Chem Chem Phys 16:533–539Google Scholar
  15. 15.
    Xie L, Li WL, Romanescu C, Huang X, Wang LS (2013) J Chem Phys 138:034308Google Scholar
  16. 16.
    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2013) Acc Chem Res 46:350–358Google Scholar
  17. 17.
    Li W-L, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang L-S (2012) J Am Chem Soc 134:165–168Google Scholar
  18. 18.
    Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2013) J Chem Phys 138:134315Google Scholar
  19. 19.
    Jia J, Ma L, Wang J-F, Wu H-S (2013) J Mol Model 19:3255–3261Google Scholar
  20. 20.
    Wang J, Jia J, Ma L, Wu H (2012) Acta Chim Sin 70:1643Google Scholar
  21. 21.
    Li W-L, Ivanov AS, Federič J, Romanescu C, Černušák I, Boldyrev AI, Wang L-S (2013) J Chem Phys 139:104312Google Scholar
  22. 22.
    Romanescu C, Galeev TR, Sergeeva AP, Li W-L, Wang L-S, Boldyrev AI (2012) J Organomet Chem 721–722:148–154Google Scholar
  23. 23.
    Li W-L, Romanescu C, Piazza ZA, Wang L-S (2012) Phys Chem Chem Phys 14:13663–13669Google Scholar
  24. 24.
    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2011) Angew Chem Int Ed 50:9334–9337Google Scholar
  25. 25.
    Yao J-G, Wang X-W, Wang Y-X (2008) Chem Phys 351:1–6Google Scholar
  26. 26.
    Xu C, Cheng L, Yang J (2014) J Chem Phys 141:124301Google Scholar
  27. 27.
    Boustani I (1995) Chem Phys Lett 240:135–140Google Scholar
  28. 28.
    Boustani I (1997) Phys Rev B 55:16426–16438Google Scholar
  29. 29.
    Boustani I (1997) Surf Sci 370:355–363Google Scholar
  30. 30.
    Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) J Phys Chem A 114:994Google Scholar
  31. 31.
    Hikmat BC, Tunna B, Rajendra RZ (2012) J Phys B Atomic Mol Phys 45:225101Google Scholar
  32. 32.
    Chacko S, Kanhere DG, Boustani I (2003) Phys Rev B 68:035414Google Scholar
  33. 33.
    Tai TB, Nguyen MT (2015) Phys Chem Chem Phys 17:13672–13679Google Scholar
  34. 34.
    Tai TB, Duong LV, Pham HT, Mai DTT, Nguyen MT (2014) Chem Commun 50:1558–1560Google Scholar
  35. 35.
    Lv J, Wang Y, Zhu L, Ma Y (2014) Nanoscale 6:11692–11696Google Scholar
  36. 36.
    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S (2012) Acc Chem Res 46:350–358Google Scholar
  37. 37.
    Jia J, Wang JF, Wu HS (2013) J Mol Model 19:3255–3261Google Scholar
  38. 38.
    Liu X, Zhao G-F, Guo L-J, Jing Q, Luo Y-H (2007) Phys Rev A 75:063201Google Scholar
  39. 39.
    Li W-L, Xie L, Jian T, Romanescu C, Huang X, Wang L-S (2014) Angew Chem 126:1312–1316Google Scholar
  40. 40.
    Wang Z-Y, Kang W-L, Jia J, Wu H-S (2014) Acta Phys Sin 63:233102Google Scholar
  41. 41.
    Hao A-Q, Xu B-Z, Jia J (2018) Mater Chem Phys 205:1–8Google Scholar
  42. 42.
    Pham HT, Nguyen MT (2015) Phys Chem Chem Phys 17:17335–17345Google Scholar
  43. 43.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186Google Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868Google Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  46. 46.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  47. 47.
    Neese F (2017) WIREs Comput Mol Sci 8:e1327Google Scholar
  48. 48.
    Lv J, Wang Y, Zhu L, Ma Y (2012) J Chem Phys 137:084104Google Scholar
  49. 49.
    Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Phys Rev B 76:014429Google Scholar
  50. 50.
    Kant A, Strauss B (1964) J Chem Phys 41:3806–3808Google Scholar
  51. 51.
    Knizia G (2013) J Chem Theory Comput 9:4834–4843Google Scholar
  52. 52.
    Böyükata M, Güvenç ZB (2011) J Alloys Compd 509:4214–4234Google Scholar
  53. 53.
    Tai TB, Nguyen MT (2010) Chem Phys 375:35–45Google Scholar
  54. 54.
    Kittel C (2005) Introduction to solid state physics. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, the School of Chemical and Material ScienceShanxi Normal UniversityLinfenChina
  2. 2.Analytical Instrumentation CenterShanxi Normal UniversityLinfenChina

Personalised recommendations