Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study

  • Rogério J. Costa
  • Elton A. S. Castro
  • José R. S. Politi
  • Ricardo Gargano
  • João B. L. MartinsEmail author
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


The search for renewable raw materials less harmful to the environment, such as methanol, ethanol, 1-propanol, and 1-butanol has become attractive. These products are obtained more rapidly and efficiently by specific solid catalysts, mainly the zeolites. The Brønsted acid sites distributed over the sinusoidal and the straight channels are important for the alcohol dehydration reaction that produces widely used chemicals. Therefore, the ONIOM method was used to study methanol, ethanol, propanol, and butanol adsorption in H-ZSM-5 zeolite. PM6 and DFT levels were used for the high layer ONIOM, while the low layer was calculated using the UFF force field. DFT was calculated using the B3LYP global hybrid GGA, M06-2X hybrid meta-GGA, and the hybrid range separated ωB97X-D functionals at 6–31+G(d) basis set. The high layer ONIOM was completely relaxed. The binding energy shows dependence on the relaxed tetrahedra and position of acid site. The Si/Al ratio was also studied.

Graphical Abstract

HOMO orbital of adsorbed alcohols showing the main contribution of zeolite for small alcohols


Adsorption Zeolite DFT Alcohol dehydration 



The authors acknowledge the financial support of CAPES and CNPq, FAPDF and also the helpful discussion with the colleagues J. A. Dias and S. C. L. Dias. Computational resources were provided at UnB – FINEP Computational Center of Chemistry Institute.


  1. 1.
    Ramasamy KK, Wang Y (2013) Catalyst activity comparison of alcohols over zeolites. J Energy Chem 22:65–71. CrossRefGoogle Scholar
  2. 2.
    Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268. CrossRefGoogle Scholar
  3. 3.
    Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249:195–207. CrossRefGoogle Scholar
  4. 4.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. CrossRefPubMedGoogle Scholar
  5. 5.
    Deng R, Yao B, Li YF, Li BH, Zhang ZZ, Zhao HF, Zhang JY, Zhao DX, Shen DZ, Fan XW, Yang LL, Zhao QX (2009) Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: a comparative study. J Cryst Growth 311:4398–4401. CrossRefGoogle Scholar
  6. 6.
    Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110. CrossRefGoogle Scholar
  7. 7.
    Ghorbanpour A, Rimer JD, Grabow LC (2016) Computational assessment of the dominant factors governing the mechanism of methanol dehydration over H-ZSM-5 with heterogeneous aluminum distribution. ACS Catal 6:2287–2298. CrossRefGoogle Scholar
  8. 8.
    Breck DW (1964) Crystalline molecular sieves. J Chem Educ 41:678–689. CrossRefGoogle Scholar
  9. 9.
    Naber JE, de Jong KP, Stork WHJ, Kuipers HPCE, Post MFM (1994) Industrial applications of zeolite catalysis. Stud Surf Sci Catal 84:2197–2219. CrossRefGoogle Scholar
  10. 10.
    Song Z, Takahashi A, Mimura N, Fujitani T (2009) Production of propylene from ethanol over ZSM-5 zeolites. Catal Lett 131:364–369. CrossRefGoogle Scholar
  11. 11.
    Roque-Malherbe R (2001) Handbook of surfaces and interfaces of materials: zeolites. Handb Surf Interface Mater 2:495–522. CrossRefGoogle Scholar
  12. 12.
    Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. CRC, Boca RatonGoogle Scholar
  13. 13.
    Bein T (1996) Synthesis and applications of molecular sieve layers and membranes. Chem Mater 8:1636–1653. CrossRefGoogle Scholar
  14. 14.
    Woolery GL, Kuehl GH (1997) On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites 19:288–296. CrossRefGoogle Scholar
  15. 15.
    Wu W, Weitz E (2014) Modification of acid sites in ZSM-5 by ion-exchange: an in-situ FTIR study. Appl Surf Sci 316:405–415. CrossRefGoogle Scholar
  16. 16.
    Gao Y, Zheng B, Wu G, Ma F, Liu C (2016) Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Adv 6:83581–83588. CrossRefGoogle Scholar
  17. 17.
    Zhang J, Qian W, Kong C, Wei F (2015) Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal 5:2982–2988. CrossRefGoogle Scholar
  18. 18.
    Decolatti HP, Dalla Costa BO, Querini CA (2015) Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH. Microporous Mesoporous Mater 204:180–189. CrossRefGoogle Scholar
  19. 19.
    Busca G (2017) Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater 254:3–16. CrossRefGoogle Scholar
  20. 20.
    Lercher JA, Jentys A, Brait A (2008) Catalytic test reactions for probing the acidity and basicity of zeolites. In: Acidity and Basicity. Molecular Sieves. Springer, Berlin, pp 153–212Google Scholar
  21. 21.
    Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolit catalysts. J Catal 47:249–259. CrossRefGoogle Scholar
  22. 22.
    Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) Crystal structure and structure-related properties of ZSM-5. J Phys Chem 85:2238–2243. CrossRefGoogle Scholar
  23. 23.
    Van Koningsveld H (1990) High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5. Acta Crystallogr Sect B 46:731–735. CrossRefGoogle Scholar
  24. 24.
    van Koningsveld H, Jansen JC, van Bekkum H (1994) The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 10:235–242. CrossRefGoogle Scholar
  25. 25.
    Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48. CrossRefGoogle Scholar
  26. 26.
    Bjørgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud KP, Svelle S (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A Gen 345:43–50. CrossRefGoogle Scholar
  27. 27.
    Haag S, Hanebuth M, Mabande GTP, Avhale A, Schwieger W, Dittmeyer R (2006) On the use of a catalytic H-ZSM-5 membrane for xylene isomerization. Microporous Mesoporous Mater 96:168–176. CrossRefGoogle Scholar
  28. 28.
    Buchanan JS, Santiesteban JG, Haag WO (1996) Mechanistic considerations in acid-catalyzed cracking of olefins. J Catal 158:279–287. CrossRefGoogle Scholar
  29. 29.
    Tanabe K, Hölderich F (1999) Industrial application of solid acid–base catalysts. Appl Catal A Gen 181:399–434. CrossRefGoogle Scholar
  30. 30.
    Bryant D, Kranich WL (1967) Dehydration of alcohols over zeolite catalysts. J Catal 8:8–13. CrossRefGoogle Scholar
  31. 31.
    West RM, Braden DJ, Dumesic JA (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments. J Catal 262:134–143. CrossRefGoogle Scholar
  32. 32.
    Takahashi A, Xia W, Wu Q, Furukawa T, Nakamura I, Shimada H, Fujitani T (2013) Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts. Appl Catal A Gen 467:380–385. CrossRefGoogle Scholar
  33. 33.
    Galli E, Vezzalini G, Quartieri S, Alberti A, Franzini M (1997) Mutinaite, a new zeolite from Antarctica: the natural counterpart of ZSM-5. Zeolites 19:318–322. CrossRefGoogle Scholar
  34. 34.
    Ohlin L, Bazin P, Thibault-Starzyk F, Hedlund J, Grahn M (2013) Adsorption of CO2, CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. J Phys Chem C 117:16972–16982. CrossRefGoogle Scholar
  35. 35.
    Fan D, Dai D-J, Wu H-S (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel) 6:101–115. CrossRefGoogle Scholar
  36. 36.
    Maihom T, Khongpracha P, Sirijaraensre J, Limtrakul J (2013) Mechanistic studies on the transformation of ethanol into ethene over Fe-ZSM-5 zeolite. ChemPhysChem 14:101–107. CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang S, Hwang JS, Jin T, Cai T, Cho W, Baek YS, Park SE (2004) Dehydration of methanol to dimethyl ether over ZSM-5 zeolite. Bull Kor Chem Soc 25:185–189. CrossRefGoogle Scholar
  38. 38.
    Lesthaeghe D, VanderMynsbrugge J, Vandichel M, Waroquier M, VanSpeybroeck V (2011) Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5. ChemCatChem 3:208–212. CrossRefGoogle Scholar
  39. 39.
    Makarova MA, Paukshtis EA, Thomas JM, Williams C, Zamaraev KI (1994) Dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate: detailed mechanistic study and the effect of pore confinement. J Catal 149:36–51. CrossRefGoogle Scholar
  40. 40.
    Huang Y, Dong X, Li M, Yu Y, Gao J, Zheng Y, Fitzgerald GB, de Joannis J, Tang Y, Wachs IE, Podkolzin SG, Huang Y, Dong X, Li M, Zhang M, Yu Y (2015) A density functional theory study on ethylene formation and conversion over P modified ZSM-5. Catal Sci Technol 5:1093–1105. CrossRefGoogle Scholar
  41. 41.
    Alexopoulos K, Lee MS, Liu Y, Zhi Y, Liu Y, Reyniers MF, Marin GB, Glezakou VA, Rousseau R, Lercher JA (2016) Anharmonicity and confinement in zeolites: structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5. J Phys Chem C 120:7172–7182. CrossRefGoogle Scholar
  42. 42.
    Nguyen CM, Reyniers M-F, Marin GB (2010) Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12:9481–9493. CrossRefPubMedGoogle Scholar
  43. 43.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels−Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. CrossRefGoogle Scholar
  44. 44.
    Chung LW, Hirao H, Li X, Morokuma K (2012) The ONIOM method: its foundation and applications to metalloenzymes and photobiology. Wiley Interdiscip Rev Comput Mol Sci 2:327–350CrossRefGoogle Scholar
  45. 45.
    Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796CrossRefGoogle Scholar
  46. 46.
    Martins JBL, Taft CA, Longo E, De Castro EAS, Da Cunha WF, Politi JRS, Gargano R (2012) ONIOM study of dissociated hydrogen and water on ZnO surface. Int J Quantum Chem 112:3223–3227. CrossRefGoogle Scholar
  47. 47.
    Guo YH, Pu M, Chen BH, Cao F (2013) Theoretical study on the cracking reaction catalyzed by a solid acid with zeolitic structure: the catalytic cracking of 1-hexene on the surface of H-ZSM-5. Appl Catal A Gen 455:65–70. CrossRefGoogle Scholar
  48. 48.
    Soltanali S, Halladj R, Ektefa F (2015) A DFT exploration of the adsorption of methanol on the Brönsted acid site of nanostructured H-ZSM-5 catalyst: probing the effect of cluster size on the O–H···O hydrogen bond based on NMR and NQR parameters. J Clust Sci 26:565–579. CrossRefGoogle Scholar
  49. 49.
    Schmidt W, Wilczok U, Weidenthaler C, Medenbach O, Goddard R, Buth G, Cepak A (2007) Preparation and morphology of pyramidal MFI single-crystal segments. J Phys Chem B 111:13538–13543. CrossRefPubMedGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M et al (2009) Gaussian 09, revision D.01. Gaussian, Inc, WallingfordGoogle Scholar
  51. 51.
    Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. CrossRefGoogle Scholar
  53. 53.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. CrossRefGoogle Scholar
  54. 54.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. CrossRefGoogle Scholar
  55. 55.
    Gomes GJ, Zalazar MF, Lindino CA, Scremin FR, Bittencourt PRS, Costa MB, Peruchena NM (2017) Adsorption of acetic acid and methanol on H-Beta zeolite: an experimental and theoretical study. Microporous Mesoporous Mater.
  56. 56.
    Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of Ethene with methanol and dimethyl ether over H-ZSM-5: an ONIOM study. J Phys Chem C 113:6654–6662. CrossRefGoogle Scholar
  57. 57.
    Patet RE, Caratzoulas S, Vlachos DG (2016) Adsorption in zeolites using mechanically embedded ONIOM clusters. Phys Chem Chem Phys 18:26094–26106. CrossRefPubMedGoogle Scholar
  58. 58.
    Scaranto J, Mallia G, Harrison NM (2011) An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(1 1 0) surface. Comput Mater Sci 50:2080–2086. CrossRefGoogle Scholar
  59. 59.
    Hunger M, Horvath T (1996) Adsorption of methanol on Bronsted acid sites in zeolite H-ZSM-5 investigated by multinuclear solid-state NMR spectroscopy. J Am Chem Soc 118:12302–12308. CrossRefGoogle Scholar
  60. 60.
    Hunger B, Matysik S, Heuchel M, Einicke W-D (1997) Adsorption of methanol on ZSM-5 zeolites. Langmuir 13:6249–6254. CrossRefGoogle Scholar
  61. 61.
    Pope CG (1993) Adsorption of methanol and related molecules. J Chem Soc Faraday Trans 89:1139–1141. CrossRefGoogle Scholar
  62. 62.
    Messow U, Quitzsch K, Herden H (1984) Heats of immersion of ZSM-5 zeolite in n-alkanes, 1-alkenes and 1-alcohols at 30°C. Zeolites 4:255–258. CrossRefGoogle Scholar
  63. 63.
    Lee C-C, Gorte RJ, Farneth WE (1997) Calorimetric study of alcohol and nitrile adsorption complexes in H-ZSM-5. J Phys Chem B 101:3811–3817. CrossRefGoogle Scholar
  64. 64.
    Vayssilov GN, Lercher JA, Rösch N (2000) Interaction of methanol with alkali metal exchanged molecular sieves. 2. Density functional study. J Phys Chem B 104:8614–8623. CrossRefGoogle Scholar
  65. 65.
    Shah R, Gale JD, Payne MC (1996) Methanol adsorption in zeolites - a first-principles study. J Phys Chem 100:11688–11697. CrossRefGoogle Scholar
  66. 66.
    Yuan S, Wang J, Li Y, Jiao H (2003) Density functional investigations into the adsorption of methanol on Isomorphously substituted ZSM-5. J Nat Gas Chem 12:93–97Google Scholar
  67. 67.
    Piccini G, Alessio M, Sauer J (2018) Ab initio study of methanol and ethanol adsorption on Brønsted sites in zeolite H-MFI. Phys Chem Chem Phys 20:19964–19970. CrossRefPubMedGoogle Scholar
  68. 68.
    Nguyen CM, Reyniers MF, Marin GB (2015) Adsorption thermodynamics of C1-C4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. J Catal 322:91–103. CrossRefGoogle Scholar
  69. 69.
    Milestone NB, Bibby DM (1984) Adsorption of alcohols from aqueous solution by ZSM-5. J Chem Technol Biotechnol Chem Technol 34:73–79. CrossRefGoogle Scholar
  70. 70.
    Aronson MT, Gorte RJ, Farneth WE (1987) An infrared spectroscopy study of simple alcohols adsorbed on H-ZSM-5. J Catal 105:455–468. CrossRefGoogle Scholar
  71. 71.
    Mirth G, Lercher JA, Anderson MW, Klinowski J (1990) Adsorption complexes of methanol on zeolite ZSM-5. J Chem Soc Faraday Trans.
  72. 72.
    Ison A, Gorte RJ (1984) The adsorption of methanol and water on H-ZSM-5. J Catal 89:150–158. CrossRefGoogle Scholar
  73. 73.
    Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB (2016) Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angew Chem Int Ed 55:12817–12821. CrossRefGoogle Scholar
  74. 74.
    Xin H, Li X, Fang Y, Yi X, Hu W, Chu Y, Zhang F, Zheng A, Zhang H, Li X (2014) Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J Catal 312:204–215. CrossRefGoogle Scholar
  75. 75.
    Dubinin MM, Rakhmatkariev GU, Isirikyan AA (1989) Heats of adsorption of methanol and ethanol on high-silicon ZSM-5 zeolite. Russ Chem Bull 38:2419–2421CrossRefGoogle Scholar
  76. 76.
    Dahms F, Costard R, Pines E, Fingerhut BP, Nibbering ETJ, Elsaesser T (2016) The hydrated excess proton in the Zundel cation H5O2+: the role of ultrafast solvent fluctuations. Angew Chem Int Ed 55:10600–10605. CrossRefGoogle Scholar
  77. 77.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76.<48::AID-ANIE48>3.0.CO;2-U CrossRefGoogle Scholar
  78. 78.
    Barone G, Casella G, Giuffrida S, Duca D (2007) {H-ZSM}-5 modified zeolite: quantum chemical models of acidic sites. J Phys Chem C 111:13033–13043. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Chemistry Laboratory, Institute of ChemistryUniversity of BrasíliaBrasíliaBrazil
  2. 2.Universidade Estadual de Goiás (UEG)AnápolisBrazil
  3. 3.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations