Skip to main content
Log in

A theoretical study on the coordination behavior of some phosphoryl, carbonyl and sulfoxide derivatives in lanthanide complexation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (R = NH2, CH3, OH, and F) derivatives with lanthanide cations (La3+, Eu3+, Lu3+) was studied by density functional theory calculations. Theoretical approaches were also used to investigate energy and the nature of metal–ligand interaction in the model complexes. Atoms in molecules and natural bond orbital (NBO) analyses were accomplished to understand the electronic structure of ligands, L, and the related complexes, L–Ln3+. NBO analysis demonstrated that the negative charge on phosphoryl, carbonyl, and sulfoxide oxygen (OP, OC, and OS) has maximum and minimum values when the connected –R groups are –NH2 and –F. The metal–ligand distance declines as, –F > –OH > –CH3 > –NH2. Charge density at the bond critical point and on the lanthanide cation in the L–Ln3+ complexes varies in the order –F < –OH < –CH3 < –NH2, due to greater ligand to metal charge transfer, which is well explained by energy decomposition analysis. It was also illustrated that E(2) values of Lp(N) → σ*(Y–N) vary in the order P=O ˃ S=O ˃ C=O and the related values of Lp(N) → σ*(Y=O) change as C=O ˃ S=O ˃ P=O in (NH2)nYO ligands (Y = P, C, and S). Trends in the L–Ln3+ CP–corrected bond energies are in good accordance with the optimized OY⋯Ln distances. It seems that, comparing the three types of ligands studied, NH2–substituted are the better coordination ligands.

Density functional theory (B3LYP) calculations were used to compare structural, electronic and energy aspects of lanthanide (La, Eu, Lu) complexes of phosphine derivatives with those of carbonyls and sulfoxides in which the R– groups connected to the P=O, C=O and S=O are –NH2, –CH3, –OH and –F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nash KL (1993) A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr Ion Exch 11(4):729–768

    Article  CAS  Google Scholar 

  2. Bhattacharyya A, Mohapatra P, Manchanda V (2006) Separation of americium (III) and europium (III) from nitrate medium using a binary mixture of Cyanex-301 with N-donor ligands. Solvent Extr Ion Exch 24(1):1–17

    Article  CAS  Google Scholar 

  3. Modolo G, Nabet S (2005) Thermodynamic study on the synergistic mixture of bis (chlorophenyl) dithiophosphinic acid and tris (2-ethylhexyl) phosphate for separation of actinides (III) from lanthanides (III). Solvent Extr Ion Exch 23(3):359–373

    Article  CAS  Google Scholar 

  4. Choppin GR, Nash KL (1995) Actinide separation science. Radiochim Acta 70(s1):225–236

    Google Scholar 

  5. Yaftian M, Burgard M, Matt D, Dieleman C, Rastegar F (1997) Solvent extraction of the rare-earth metal ions by a cone-shaped caldc[4]arene substituted at the lower rtm by four-CH2P(O)Ph2 ligands. Solvent Extr Ion Exch 15(6):975–989

    Article  CAS  Google Scholar 

  6. Boehme C, Wipff G (2001) The energetic and structural effects of steric crowding in phosphate and dithiophosphinate complexes of lanthanide cations M3+: a computational study. Chem Eur J 7(7):1398–1407

    Article  CAS  Google Scholar 

  7. Nazarenko A, Baulin V, Lamb J, Volkova T, Varnek A, Wipff G (1999) Solvent extraction of metal picrates by phosphoryl-containing podands. Solvent Extr Ion Exch 17(3):495–523

    Article  CAS  Google Scholar 

  8. Atamas L, Klimchuk O, Rudzevich V, Pirozhenko V, Kalchenko V, Smirnov I, Babain V, Efremova T, Varnek A, Wipff G (2002) New organophosphorus calix [4] arene ionophores for trivalent lanthanide and actinide cations. J Supramol Chem 2(4):421–427

    Article  CAS  Google Scholar 

  9. Jenkins AL, Uy OM, Murray GM (1999) Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal Chem 71(2):373–378

    Article  CAS  Google Scholar 

  10. Alexander V (1995) Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 95(2):273–342

    Article  CAS  Google Scholar 

  11. Dam HH, Beijleveld H, Reinhoudt DN, Verboom W (2008) In the pursuit for better actinide ligands: an efficient strategy for their discovery. J Am Chem Soc 130(16):5542–5551

    Article  CAS  Google Scholar 

  12. Bickelhaupt F, Baerends EJ (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York

  13. Buncel E, Decouzon M, Formento A, Gal J-F, Herreros M, Lewyn L, Maria P-C, Koppel I, Kurg R (1997) Lithium-cation and proton affinities of sulfoxides and sulfones: a Fourier transform ion cyclotron resonance study. J Am Soc Mass Spectrom 8(3):262–269

    Article  Google Scholar 

  14. Staley RH, Beauchamp J (1975) Intrinsic acid-base properties of molecules. Binding energies of lithium (1+) ion to. pi.-and n-donor bases. J Am Chem Soc 97(20):5920–5921

    Article  CAS  Google Scholar 

  15. Kollman P (1977) A general analysis of noncovalent intermolecular interactions. J Am Chem Soc 99(15):4875–4894

    Article  CAS  Google Scholar 

  16. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10(8):294–300

    Article  CAS  Google Scholar 

  17. Berny F, Muzet N, Troxler L, Dedieu A, Wipff G (1999) Interaction of M3+ lanthanide cations with amide, pyridine, and phosphoryl O PPh3 ligands: a quantum mechanics study. Inorg Chem 38(6):1244–1252

    Article  CAS  Google Scholar 

  18. Baaden M, Berny F, Boehme C, Muzet N, Schurhammer R, Wipff G (2000) Interaction of trivalent lanthanide cations with phosphoryl derivatives, amide, anisole, pyridine and triazine ligands: a quantum mechanics study. J Alloys Compd 303:104–111

    Article  Google Scholar 

  19. Schurhammer R, Erhart V, Troxler L, Wipff G (1999) Interaction of M 3+ lanthanide cations with phosphoryl containing (alkyl) 3 P [double bond, length half m-dash] O versus (alkyl-O) 3 P [double bond, length half m-dash] O ligands: steric effects are more important than basicity effects. J Chem Soc Perkin Trans 2(11):2423–2431

    Article  Google Scholar 

  20. Troxler L, Dedieu A, Hutschka F, Wipff G (1998) Complexation of Ln 3+ lanthanide cations with phosphoryl-containing OPR 3 ligands: a quantum-mechanics study. J Mol Struct THEOCHEM 431(1):151–163

    Article  CAS  Google Scholar 

  21. Troxler L, Baaden M, Böhmer V, Wipff G (2000) Complexation of M3+ lanthanide cations by calix [4] arene-CMPO ligands: a molecular dynamics study in methanol solution and at a water/chloroform Interface. Supramol Chem 12(1):27–51

    Article  CAS  Google Scholar 

  22. Boehme C, Wipff G (2002) Carbamoylphosphine oxide complexes of trivalent lanthanide cations: role of counterions, ligand binding mode, and protonation investigated by quantum mechanical calculations. Inorg Chem 41(4):727–737

    Article  CAS  Google Scholar 

  23. Hutschka F, Dedieu A, Troxler L, Wipff G (1998) Theoretical studies on the UO22+ and Sr2+ complexation by phosphoryl-containing O PR3 ligands: QM ab initio calculations in the gas phase and MD FEP calculations in aqueous solution. J Phys Chem A 102(21):3773–3781

    Article  CAS  Google Scholar 

  24. Gholivand K, Mahzouni HR, Esrafili MD (2010) How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels. Theor Chem Accounts 127(5-6):539–550

    Article  CAS  Google Scholar 

  25. Berny F, Wipff G (2001) Interaction of M 3+ lanthanide cations with amide, urea, thioamide and thiourea ligands: a quantum mechanical study. J Chem Soc Perkin Trans 2(1):73–82

    Article  Google Scholar 

  26. Boehme C, Coupez B, Wipff G (2002) Interaction of M3+ lanthanide cations with diamide ligands and their thia analogues: a quantum mechanics study of monodentate vs bidentate binding, counterion effects, and ligand protonation. J Phys Chem A 106(27):6487–6498

    Article  CAS  Google Scholar 

  27. Wang C-Z, Lan J-H, Wu Q-Y, Zhao Y-L, Wang X-K, Chai Z-F, Shi W-Q (2014) Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Trans 43(23):8713–8720

    Article  CAS  Google Scholar 

  28. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Zakrzewski V, Montgomery Jr J, Stratmann RE, Burant J (1998) Gaussian 98, revision a. 7. Gaussian. Inc, Pittsburgh

    Google Scholar 

  29. Maron L, Eisenstein O (2000) Do f electrons play a role in the lanthanide–ligand bonds? A DFT study of ln (NR2) 3; R= H, SiH3. J Phys Chem A 104(30):7140–7143

    Article  CAS  Google Scholar 

  30. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  32. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75(3):173–194

    Article  CAS  Google Scholar 

  33. Dolg M, Stoll H, Preuss H (1993) A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor Chim Acta 85(6):441–450

    Article  CAS  Google Scholar 

  34. Cotton S (2006) Chap. 1. Introduction to the lanthanides. Lanthanide and Actinide Chemistry. Wiley, New York, pp 1–7

  35. Ehlers A, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler K, Stegmann R, Veldkamp A, Frenking G (1993) A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc, Cu, Y, Ag and La, Au. Chem Phys Lett 208(1–2):111–114

    Article  CAS  Google Scholar 

  36. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000-a program to analyze and visualize atoms. University of Applied Science, Bielefeld

    Google Scholar 

  37. Bader R, Molecules AI (1990) A quantum theory. Clarendon, Oxford

    Google Scholar 

  38. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  39. Merino G, Vela A, Heine T (2005) Description of electron delocalization via the analysis of molecular fields. Chem Rev 105(10):3812–3841

    Article  CAS  Google Scholar 

  40. López CS, Faza ON, Cossío FP, York DM, de Lera AR (2005) Ellipticity: a convenient tool to characterize electrocyclic reactions. Chem Eur J 11(6):1734–1738

    Article  Google Scholar 

  41. Castillo N, Boyd RJ (2006) An atoms in molecules study of the halogen resonance effect. J Chem Theory Comput 2(2):271–280

    Article  CAS  Google Scholar 

  42. Matta CF, Hernández-Trujillo J (2003) Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. J Phys Chem A 107(38):7496–7504

    Article  CAS  Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  44. Boys SF, Fd B (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  45. Chalasinski G, Szczesniak MM (1994) Origins of structure and energetics of van der Waals clusters from ab initio calculations. Chem Rev 94(7):1723–1765

    Article  CAS  Google Scholar 

  46. Xantheas SS (1996) On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J Chem Phys 104(21):8821–8824

    Article  CAS  Google Scholar 

  47. Jansen H, Ros P (1969) Non-empirical molecular orbital calculations on the protonation of carbon monoxide. Chem Phys Lett 3(3):140–143

    Article  CAS  Google Scholar 

  48. Liu B, McLean A (1973) Accurate calculation of the attractive interaction of two ground state helium atoms. J Chem Phys 59(8):4557–4558

    Article  CAS  Google Scholar 

  49. Dobado J, Martínez-García H, Molina JM, Sundberg MR (1998) Chemical bonding in hypervalent molecules revised. Application of the atoms in molecules theory to Y3 X and Y3 XZ (Y= H or CH3; X= N, P or As; Z= O or S) compounds. J Am Chem Soc 120(33):8461–8471

    Article  CAS  Google Scholar 

  50. Kim CK, Zhang H, Yoon SH, Won J, Lee M-J, Kim CK (2008) Effects of basis set superposition error on optimized geometries and complexation energies of organo-alkali metal cation complexes. J Phys Chem A 113(2):513–519

    Article  Google Scholar 

  51. Petit L, Adamo C, Maldivi P (2006) Toward a clear-cut vision on the origin of 2, 6-di (1, 2, 4-triazin-3-yl) pyridine selectivity for trivalent actinides: insights from theory. Inorg Chem 45(21):8517–8522

    Article  CAS  Google Scholar 

  52. Bhattacharyya A, Ghanty TK, Mohapatra PK, Manchanda VK (2011) Selective americium (III) complexation by dithiophosphinates: a density functional theoretical validation for covalent interactions responsible for unusual separation behavior from trivalent lanthanides. Inorg Chem 50(9):3913–3921

    Article  CAS  Google Scholar 

  53. Petit L, Daul C, Adamo C, Maldivi P (2007) DFT modeling of the relative affinity of nitrogen ligands for trivalent f elements: an energetic point of view. New J Chem 31(10):1738–1745

    Article  CAS  Google Scholar 

  54. Baerends E, Autschbach J, Bérces A, Bo C, Boerrigter P, Cavallo L, Chong D, Deng L, Dickson R, Ellis D et al (2008) ADF2009.01, SCM, theoretical chemistry. Vrije Universiteit, Amsterdam, http://www.scm.com/

  55. Gilheany DG (1994) No d orbitals but Walsh diagrams and maybe banana bonds: chemical bonding in phosphines, phosphine oxides, and phosphonium ylides. Chem Rev 94(5):1339–1374

    Article  CAS  Google Scholar 

  56. Coupez B, Boehme C, Wipff G (2002) Interaction of bifunctional carbonyl and phosphoryl ligands with M 3+ lanthanide cations: how strong is the bidentate effect? The role of ligand size and counterions investigated by quantum mechanics. Phys Chem Chem Phys 4(23):5716–5729

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support of this work by Tarbiat Modares University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodayar Gholivand.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Highlights

1. The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (with R = NH2, CH3, OH, and F) derivatives to lanthanide cations (La3+, Eu3+, Lu3+) was studied.

2. Atoms in molecules and natural bonding orbital analyses were performed to understand the electronic structure of ligands L and related complexes, results represented the strongest metal−ligand interaction in (NH2)nYO − Ln3+ complexes.

3. Comparison of the optimized structural parameters and estimated L–Ln3+ bond energies have revealed that the (NH2)nYO⋯Ln3+ interactions are stronger than those of Me-, OH- and F-substituted interactions.

4. Bonding analyses of all (Me/NH2/OH/F)2CO–Ln3+, (Me/NH2/OH/F)2SO–Ln3+ and (Me/NH2/OH/F)3PO–Ln3+ complexes were carried out, in terms of energy-decomposition analysis (EDA).

5. EDA data indicate a significant contribution of charge-transfer from ligand to metal of the total attractive forces but the main contribution to ΔEint is from ΔEelstat.

Electronic supplementary material

ESM 1

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholivand, K., Kahnouji, M., Maghsoud, Y. et al. A theoretical study on the coordination behavior of some phosphoryl, carbonyl and sulfoxide derivatives in lanthanide complexation. J Mol Model 24, 328 (2018). https://doi.org/10.1007/s00894-018-3865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3865-7

Keywords

Navigation