Skip to main content
Log in

The effect of DNA backbone on the triplet mechanism of UV-induced thymine-thymine (6–4) dimer formation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations were carried out to investigate the formation mechanism of the thymine-thymine (6–4) dimer ((6–4)TT), which is one of the main DNA lesions induced by ultraviolet radiation and is closely related to skin cancers. The DNA backbone was found to have nonnegligible effects on the triplet reaction pathway, particularly the reaction steps involving substantial base rotations. The mechanism for the isomerization from (6–4)TT to its Dewar valence isomer (DewarTT) was also explored, confirming the necessity of absorbing a second photon. In addition, the solvation effects were examined and showed considerable influence on the potential energy surface.

DFT calculations on the influence of DNA backbone on the mechanism of UV-induced thymine-thymine (6–4) dimer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington, DC

    Google Scholar 

  2. Taylor JS (1994) Unraveling the molecular pathway from sunlight to skin-cancer. Acc Chem Res 27(3):76–82

    Article  CAS  Google Scholar 

  3. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1–3):88–102

    Article  CAS  Google Scholar 

  4. Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40(8):2495–2501

    Article  CAS  Google Scholar 

  5. Lukin M, de los Santos C (2006) NMR structures of damaged DNA. Chem Rev 106(2):607–686

    Article  CAS  Google Scholar 

  6. Lima-Bessa KM, Menck CFM (2005) Skin cancer: Lights on genome lesions. Curr Biol 15(2):R58–R61

    Article  CAS  Google Scholar 

  7. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236

    Article  CAS  Google Scholar 

  8. Marguet S, Markovitsi D (2005) Time-resolved study of thymine dimer formation. J Am Chem Soc 127(16):5780–5781

    Article  CAS  Google Scholar 

  9. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. P Natl Acad Sci USA 103(37):13765–13770

    Article  CAS  Google Scholar 

  10. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernandez CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Thymine dimerization in DNA is an ultrafast photoreaction. Science 315(5812):625–629

    Article  CAS  Google Scholar 

  11. Kwok WM, Ma C, Phillips DL (2008) A doorway state leads to photostability or triplet photodamage in thymine DNA. J Am Chem Soc 130(15):5131–5139

    Article  CAS  Google Scholar 

  12. Cuquerella MC, Lhiaubet-Vallet V, Bosca F, Miranda MA (2011) Photosensitised pyrimidine dimerisation in DNA. Chem Sci 2(7):1219–1232

    Article  CAS  Google Scholar 

  13. Banyasz A, Douki T, Improta R, Gustavsson T, Onidas D, Vaya I, Perron M, Markovitsi D (2012) Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study. J Am Chem Soc 134(36):14834–14845

    Article  CAS  Google Scholar 

  14. Lee JH, Choi YJ, Choi BS (2000) Solution structure of the DNA decamer duplex containing a 3 ′-T.T base pair of the cis-syn cyclobutane pyrimidine dimer: implication for the mutagenic property of the cis-syn dimer. Nucleic Acids Res 28(8):1794–1801

    Article  CAS  Google Scholar 

  15. Zhang RB, Eriksson LA (2006) A triplet mechanism for the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA. J Phys Chem B 110(14):7556–7562

    Article  CAS  Google Scholar 

  16. Serrano-Perez JJ, Gonzalez-Ramirez I, Coto PB, Merchan M, Serrano-Andres L (2008) Theoretical insight into the intrinsic ultrafast formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: thymine versus cytosine. J Phys Chem B 112(45):14096–14098

    Article  CAS  Google Scholar 

  17. Roca-Sanjuan D, Olaso-Gonzalez G, Gonzalez-Ramirez I, Serrano-Andres L, Merchan M (2008) Molecular basis of DNA photodimerization: Intrinsic production of cyclobutane cytosine dimers. J Am Chem Soc 130(32):10768–10779

    Article  CAS  Google Scholar 

  18. Climent T, Gonzalez-Ramirez I, Gonzalez-Luque R, Merchan M, Serrano-Andres L (2010) Cyclobutane pyrimidine photodimerization of DNA/RNA nucleobases in the triplet state. J Phys Chem Lett 1(14):2072–2076

    Article  CAS  Google Scholar 

  19. Barbatti M (2014) Computational reference data for the photochemistry of cyclobutane pyrimidine dimers. ChemPhysChem 15(15):3342–3354

    Article  CAS  Google Scholar 

  20. Blancafort L, Migani A (2007) Modeling thymine photodimerizations in DNA: mechanism and correlation diagrams. J Am Chem Soc 129(47):14540–14541

    Article  CAS  Google Scholar 

  21. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    Article  CAS  Google Scholar 

  22. Ai YJ, Liao RZ, Chen SF, Luo Y, Fang WH (2010) Theoretical studies on photoisomerizations of (6-4) and dewar photolesions in DNA. J Phys Chem B 114(44):14096–14102

    Article  CAS  Google Scholar 

  23. Yang ZB, Eriksson LA, Zhang RB (2011) A theoretical rationale for why azetidine has a faster rate of formation than oxetane in TC(6-4) photoproducts. J Phys Chem B 115(31):9681–9686

    Article  CAS  Google Scholar 

  24. Yang ZB, Zhang RB, Eriksson LA (2011) A triplet mechanism for the formation of thymine-thymine (6-4) dimers in UV-irradiated DNA. Phys Chem Chem Phys 13(19):8961–8966

    Article  CAS  Google Scholar 

  25. Giussani A, Serrano-Andres L, Merchan M, Roca-Sanjuan D, Garavelli M (2013) Photoinduced formation mechanism of the thymine-thymine (6-4) adduct. J Phys Chem B 117(7):1999–2004

    Article  CAS  Google Scholar 

  26. Giussani A, Conti I, Nenov A, Garavelli M (2018) Photoinduced formation mechanism of the thymine-thymine (6-4) adduct in DNA; a QM(CASPT2//CASSCF):MM(AMBER) study. Faraday Discuss 207:375–387

    Article  CAS  Google Scholar 

  27. Ai YJ, Liao RZ, Chen SL, Hua WJ, Fang WH, Luo Y (2011) Repair of DNA Dewar photoproduct to (6-4) photoproduct in (6-4) photolyase. J Phys Chem B 115(37):10976–10982

    Article  CAS  Google Scholar 

  28. Haiser K, Fingerhut BP, Heil K, Glas A, Herzog TT, Pilles BM, Schreier WJ, Zinth W, de Vivie-Riedle R, Carell T (2012) Mechanism of UV-induced formation of dewar lesions in DNA. Angew Chem Int Ed 51(2):408–411

    Article  CAS  Google Scholar 

  29. Fingerhut BP, Herzog TT, Ryseck G, Haiser K, Graupner FF, Heil K, Gilch P, Schreier WJ, Carell T, de Vivie-Riedle R, Zinth W (2012) Dynamics of ultraviolet-induced DNA lesions: Dewar formation guided by pre-tension induced by the backbone. New J Phys 14(6):065006

    Article  Google Scholar 

  30. Bucher DB, Pilles BM, Carell T, Zinth W (2015) Dewar lesion formation in single- and double-stranded DNA is quenched by neighboring bases. J Phys Chem B 119(28):8685–8692

    Article  CAS  Google Scholar 

  31. Douki T, Rebelo-Moreira S, Hamon N, Bayle PA (2015) DNA photochemistry: geometrically unconstrained pyrimidine (6-4) pyrimidone photoproducts do photoisomerize. Org Lett 17(2):246–249

    Article  CAS  Google Scholar 

  32. Taylor JS, Garrett DS, Cohrs MP (1988) Solution-state structure of the dewar pyrimidinone photoproduct of thymidylyl-(3’→5’)-thymidine. Biochemistry 27(19):7206–7215

    Article  CAS  Google Scholar 

  33. Johns HE, Pearson ML, LeBlanc JC, Helleiner CW (1964) The ultraviolet photochemistry of thymidylyl-(3’→5’) thymidine. J Mol Biol 9(2):503–523

    Article  CAS  Google Scholar 

  34. Merchan M, Serrano-Andres L, Robb MA, Blancafort L (2005) Triplet-state formation along the ultrafast decay of excited singlet cytosine. J Am Chem Soc 127(6):1820–1825

    Article  CAS  Google Scholar 

  35. Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B (2008) Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem Phys 347(1–3):383–392

    Article  CAS  Google Scholar 

  36. Maul MJ, Barends TRM, Glas AF, Cryle MJ, Domratcheva T, Schneider S, Schlichting I, Carell T (2008) Crystal structure and mechanism of a DNA (6-4) photolyase. Angew Chem Int Ed 47(52):10076–10080

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    Google Scholar 

  38. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  39. Mennucci B, Tomasi J (1997) Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106(12):5151–5158

    Article  CAS  Google Scholar 

  40. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Accounts 99(2):95–99

    Article  CAS  Google Scholar 

  41. Lu T (2017) sobMECP program. http://sobereva.com/286 (accessed on March 2017)

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

Download references

Acknowledgments

H.Y. is the recipient of an Australian Research Council Future Fellowship (Project number FT110100034) and X.W. is the recipient of the University of Wollongong Vice Chancellor’s Postdoctoral Research Fellowship. We wish to acknowledge that this research was undertaken with the assistance of resources provided at the NCI National Facility Systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government (project id uq5 and v15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingyong Wang or Haibo Yu.

Additional information

This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(PDF 1362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, H. The effect of DNA backbone on the triplet mechanism of UV-induced thymine-thymine (6–4) dimer formation. J Mol Model 24, 319 (2018). https://doi.org/10.1007/s00894-018-3863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3863-9

Keywords

Navigation