Skip to main content
Log in

Estimation of the thermal and photochemical stabilities of pheromones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

The correlation between the kinetic stability of molecules against temperature and variations in their geometric structure under optical excitation is investigated by the example of different organic pheromone molecules sensitive to temperature or ultraviolet radiation using the density functional theory. The kinetic stability is determined by the previously developed method based on the calculation of the probability of extension of any structural bond by a value exceeding the limit value Lмах corresponding to the breaking of the bond under temperature excitation. The kinetic stability calculation only requires the eigenfrequencies and vibrational mode vectors in the molecule ground state to be calculated, without determining the transition states. The weakest bonds in molecules determined by the kinetic stability method are compared with the bond length variations in molecules in the excited state upon absorption of light by a molecule. Good agreement between the results obtained is demonstrated and the difference between them is discussed. The universality of formulations within both approaches used to estimate the stability of different pheromone molecules containing strained cycles and conjugated, double, and single bonds allows these approaches to be applied for studying other molecules.

Estimation of the thermal and photochemical stabilities of pheromones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Regnier FE, Law JH (1968) Insect pheromones. J Lipid Res 9(5):541–551

    CAS  PubMed  Google Scholar 

  2. Buser H-R, Guerin PM, Tóth M, Szöcs G, Schmid A, Francke W, Arn H (1985) (Z,Z)-6,9-nonadecadien-3-one and (Z,Z,Z)-3,6,9-nonadecatriene: identification and synthesis of sex pheromone components of Peribatodes rhomboidaria. Tetrahedron Lett 26:403–406

    Article  CAS  Google Scholar 

  3. Pajares JA, Alvarez G, Ibeas F et al (2010) Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J Chem Ecol 36(6):570–583

    Article  CAS  Google Scholar 

  4. Lei H, Chiu H-Y (2013) Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures. J Comp Physiol A 199(11):997–1014

    Article  CAS  Google Scholar 

  5. Tomilin FN, Osina OV, Kuzubov AA et al (2011) Stability of forest lepidopteran pheromones against environmental factors. Biophysics 4:714–722

    Google Scholar 

  6. Shi R-W, Liu F (2016) Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors. J Mol Model 22:140

    Article  Google Scholar 

  7. Soukhovolsky VG, Tomilin FN, Artyushenko PV, Tsikalova PE (2016) System of Forest insect pheromone communication: stability of «information» molecules to environmental factors. Siberian. J For Sci 3:67–76

    Google Scholar 

  8. Soukhovolsky VG, Volkova (Tsikalova) PE, Tarasova OV (2014) Modeling of forest insect pheromone communication system. Female as a Source of Information, Siberian. J For Sci 6:69–79

    Google Scholar 

  9. Artyushenko PV, Tomilin FN, Ovchinnikov SG et al (2017) The stability of the pheromones of xylophagous insects to environmental factors: an evaluation by quantum chemical analysis. Biophysics 62:532–538

    Article  CAS  Google Scholar 

  10. Fedorov AS, Fedorov DA, Kuzubov AA, Avramov PV, Nishimura Y, Irle S, Witek HA (2011) Relative isomer abundance of fullerenes and carbon nanotubes correlates with kinetic stability. Phys Rev Lett 107:175506

    Article  CAS  Google Scholar 

  11. Fedorov AS, Kuzubov AA, Visotin MA, Tomilin FN (2017) New method for calculations of nanostructure kinetic stability at high temperature. J Magn Magn Mater 440:167–170

    Article  CAS  Google Scholar 

  12. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  13. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  14. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee-Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  15. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunagaetal N (1993) General atomic and molecular electronic structure system. Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  16. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52-12:997–1000

    Article  Google Scholar 

  17. Petersilka M, Gossmann U, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76-8:1212–1215

    Article  Google Scholar 

  18. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1068

    Article  CAS  Google Scholar 

  19. Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and test set of experimental energies. J Chem Phys 123:124107–124119

    Article  Google Scholar 

  20. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306

    Article  CAS  Google Scholar 

  21. Fredj D, Hassen CB, Elleuch S, Feki H, Boudjada NC, Mhiri T, Boujelbene M (2017) Structural, vibrational and optical properties of a new organic–inorganic material: (C5H8N3)2[BiCl5], J. Mater Res Bull 85:23–29

    Article  CAS  Google Scholar 

  22. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47-3:1045–1052

    Article  Google Scholar 

  23. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17-13:1571–1586

    Article  Google Scholar 

  24. Artyushenko PV, Tomilin FN, Kuzubov AA, Ovchinnikov SG, Tsikalova PE, Ovchinnikova TM, Soukhovolsky VG (2016) Action of the atomic and electronic structure of pheromone molecules on the effectiveness of communication in xylophagous insects. J Struct Chem 57(2):287–293

    Article  CAS  Google Scholar 

  25. Nesmeyanov AN, Nesmeyanov NA (1974) Organic chemistry. Chemistry, Moscow

    Google Scholar 

  26. Kirk RE, Othmer DF (1983) Encyclopedia of chemical technology 223rd edn. Wiley, New York

    Google Scholar 

  27. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Willey-VCH, Weinheim

    Book  Google Scholar 

  28. Birgersson G, Schlyter F, Löfqvist J et al (1984) Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J Chem Ecol 10:1029–1055

    Article  CAS  Google Scholar 

  29. Pettersson E, Boland W (2003) Potential parasitoid attractants, volatile composition throughout a bark beetle attack. Chemoecology 13:27–37

    Article  CAS  Google Scholar 

  30. Fan J, Kang L, Sun J (2007) Role of host volatiles in mate location by the Japanese pine sawyer, Monochamus alternatus hope (Coleoptera: Cerambycidae). Environ Entomol 36:58–63

    Article  CAS  Google Scholar 

  31. Allison JD, Borden JH, McIntosh RL et al (2001) Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. J Chem Ecol 27:633–647

    Article  CAS  Google Scholar 

  32. Nabil N (2009) State of the art on the monitoring of the pine wood nematode –PWN (Bursaphelenchusxylophilus) and its insect vector (Monochamusgalloprovincialis) in Europe. Institut Européen de la forêtcultivée EFIATLANTIC, Cestas

    Google Scholar 

  33. Ibeas F, Diez JJ, Pajares JA (2008) Olfactory sex attraction and mating behaviour in the pine sawyerMonochamus galloprovincialis (Coleoptera: Cerambycidae). J Insect Behav 21:101–111

    Article  Google Scholar 

  34. Ibeas F, Gallego D, Diez JJ et al (2007) An operative kairomonal lure for managing pine sawyer beetle Monochamus galloprovincialis (Coleoptera: Cerymbycidae). J Appl Entomol 131:13–20

    Article  CAS  Google Scholar 

  35. Plemenkov VV (2007) Khimiya izoprenoidov (the chemistry of isoprenoids). Izd. Altais. Univer, Barnaul

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research, Government of the Krasnoyarsk Territory, and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project no. 16-44-243019 and the Russian Foundation for Basic Research, project no. 15-02-06869 and no. 16-04-00132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Tomilin.

Electronic supplementary material

ESM 1

(DOCX 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, F.N., Fedorov, A.S., Artyushenko, P.V. et al. Estimation of the thermal and photochemical stabilities of pheromones. J Mol Model 24, 323 (2018). https://doi.org/10.1007/s00894-018-3859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3859-5

Keywords

Navigation