Skip to main content
Log in

Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The feasibility of electron transport conduction through a guanine base of DNA was investigated and then compared with another component of DNA, i.e., cytosine. A mathematical approach based on the jellium model using non-equilibrium Green’s function combined with semi empirical extended Huckel theory was applied using the Atomistik Tool Kit. This was further used to measure significant transport parameters such as current, conductance, transmission spectra and the HOMO–LUMO gap of the suggested molecular system. An important revelation from our research work is that the cytosine-based molecular device exhibits metallic behavior with current ranging up to 70 μA, and hence establishes itself as a good conductor. On the other hand, the guanine-based device is comparatively less conductive, exhibiting current in the order of 3 μA. Another interesting observation about the guanine-based device is the visibility of a prominent negative differential resistance effect during the positive bias and a tunneling effect during negative bias. The uniform charge transfer through the cytosine device confirms its application as a molecular wire. The observations on the guanine-based device give better insights into its application as a memory device for nano-scale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Storm AJ, van Noort J, de Vries S, Dekker C (2001) Appl Phys Lett 79:3881

    Article  CAS  Google Scholar 

  2. Zhang Y, Austin RH, Kraeft J, Cox EC, Ong NP (2002) Phys Rev Lett 89:198102

    Article  CAS  Google Scholar 

  3. Kasumov AY, Kociak M, Guéron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280–282

    Article  CAS  Google Scholar 

  4. Dulić D, Tuukkanen S, Chung CL, Isambert A, Lavie P, Filoramo A (2009) Nanotechnology 20:115502

    Article  Google Scholar 

  5. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635

    Article  CAS  Google Scholar 

  6. Vohra R, Bhat Y, Kaur M, Sawhney RS (2017) Scrutiny of electron transport properties of adenine molecule under dissimilar miller orientations. J Bionanosci 11:363–369. https://doi.org/10.1166/jbns.2017.1462

    Article  CAS  Google Scholar 

  7. Bhat Y, Vohra R, Kaur M, Sawhney RS (2017) Impact of different metallic electrodes on quantum transport through deoxyribonucleic acid. J Comput Theor Nanosci 14(8):4137–4142

    Article  CAS  Google Scholar 

  8. Goshi N, Narenji A, Bui C, Mokili JL, Kassegne S (2016) Investigation into the effects of nucleotide content on electrical characteristics of DNA plasmid molecular wires. IEEE Transactions on NanoBioscience 15(6):585–594 https://doi.org/10.1109/TNB.2016.2596243

    Article  Google Scholar 

  9. Bruot C, Xiang L, Palma J, Tao N (2014) Effect of mechanical stretching on DNA conductance. ACS Nano 9:88–94. https://doi.org/10.1021/nn506280t

    Article  Google Scholar 

  10. Eley DD, Spivey DI (1962) Trans Faraday Soc 58:411–415

    Article  CAS  Google Scholar 

  11. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  12. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Turro NJ, Barton JK (1993) Science 262:1025–1029

    Article  CAS  Google Scholar 

  13. Meade TJ, Kayyem JF (1995) Angew Chem Int Ed 34:352–354

    Article  CAS  Google Scholar 

  14. Lewis F, Wu T, Zhang Y, Letsinger R, Greenfield S, Wasielewski M (1997) Science 277:673–676

    Article  CAS  Google Scholar 

  15. Boon EM, Barton JK (2002) Curr Opin Struct Biol 12:320–329

    Article  CAS  Google Scholar 

  16. Slinker JD, Muren NB, Renfrew SE, Barton JK (2011) Nat Chem 3:228–233

    Article  CAS  Google Scholar 

  17. Fink H-W, Schönenberger C (1999) Nature 398:407–410

    Article  CAS  Google Scholar 

  18. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775–778

    Article  CAS  Google Scholar 

  19. Porath D, Bezryadin A, de Vries S, Dekker C (1999) Nature 403:635–638

    Article  Google Scholar 

  20. Pensa E, Cortés E, Corthey G, Carro P, Vericat C, Fonticelli MH, Benitez G, Rubert AA, Salvarezza R (2012) The chemistry of the sulfur-gold Interface: in search of a unified model. Acc Chem Res 45:1183–1192. https://doi.org/10.1021/ar200260p

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann R (1963) An extended Hückel theory. I. Hydrocarbons. J Chem Phys 39(6):1397–1412

    Article  CAS  Google Scholar 

  22. Atomistix Tool Kit 13.8.0 Manual (http://www.quantumwise.com)

  23. Barkas SN (2005) An introduction to fast Poisson solvers. Philips J Res 37(5–6):231–264

    Google Scholar 

  24. Whangbo MH (2000) TheorChemAcc 103:252. https://doi.org/10.1007/s002149900064

    Article  CAS  Google Scholar 

  25. Randhawa DKK, Bharadwaj LM, Kaur I, Singh ML (2011) Tunneling effects in DNA bases adenine and guanine. Int J Comput Appl 17(1):8–12

    Google Scholar 

  26. Oshima Y (2003) Surf Sci 531:209

    Article  CAS  Google Scholar 

  27. Ji G, Cui B, Xu Y, Fang C, Zhao W, Li D, Liu D (2014) RSC Adv 4:16537

    Article  CAS  Google Scholar 

  28. Saghatelian A, Völcker N, Guckian KM, Lin VS, Ghadiri MR (2003) DNA-based photonic logic gates: AND, NAND, and INHIBIT. J Am Chem Soc 125:346–347. https://doi.org/10.1021/ja029009m

    Article  CAS  PubMed  Google Scholar 

  29. Feynman RP (1992) There is plenty of room at the bottom (A transcript of a talk given by Richard P. Feynman on 26 December 1959, at the annual meeting of the American Physical Society (APS) at the California Institute of Technology). J Microelectromechanical Syst 1:60–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Vohra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, R., Sawhney, R.S. Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices. J Mol Model 24, 330 (2018). https://doi.org/10.1007/s00894-018-3856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3856-8

Keywords

Navigation