Skip to main content
Log in

Can a temporary bond between dye and redox mediator increase the efficiency of p-type dye-sensitized solar cells?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Efficient n-type dye-sensitized solar cells are known since the seminal work of O’Reagan and Grätzel in 1991. However, highly efficient p-type dye-sensitized solar cells have not been developed so far. This hinders the construction of tandem dye-sensitized solar cells, which can surpass the performance of n-type devices. Within this work, we investigate if a temporary coordination of transition metal-based redox mediators at a sensitizer can increase the efficiency of p-type dye-sensitized solar cells. Based on a computational screening, diverse Cu, Ni, and Co redox mediators were selected to construct p-type dye-sensitized solar cells. Unfortunately, the efficiency of the investigated devices does not surpass analogous cells with iodide-triiodide as redox mediator. While Ni and Cu complexes might be reduced to Ni(0) and Cu(0), respectively, the investigated Co-complex quenches the excited state efficiently. As a result, the necessary electron injection from the semiconductor is too slow, which hinders the construction of a highly efficient p-type dye-sensitized solar cell.

Comparison of the mode of action of p-type dye-sensitized solar cells. While top shows the traditional one, bottom shows the investigated devices where a temporary link between dye and redox mediator plays a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O’Reagan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  3. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  4. Perera IR, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin CA, Bach U, Spiccia L (2015) Angew Chem Int Ed 54:3758–3762

    Article  CAS  Google Scholar 

  5. He J, Lindström H, Hagfeldt A, Lindquist S-E (2000) Sol Energy Mater Sol Cells 62:265–273

    Article  CAS  Google Scholar 

  6. Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E (2005) Chem Lett 34:500–5001

    Article  CAS  Google Scholar 

  7. Nattestad A, Mozer AJ, Fischer MKR, Cheng Y-B, Mishra A, Bäuerle P, Bach U (2010) Nat Mater 9:31–35

    Article  CAS  Google Scholar 

  8. Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414–2423

    Article  CAS  Google Scholar 

  9. Hamann TW (2012) Dalton Trans 41:3111–3115

    Article  CAS  Google Scholar 

  10. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) Coord Chem Rev 257:1472–1492

    Article  CAS  Google Scholar 

  11. Powar S, Daeneke T, Ma MT, Fu D, Duffy NW, Götz G, Weidelener M, Mishra A, Bäuerle P, Spiccia L, Bach U (2013) Angew Chem Int Ed 52:602–605

    Article  CAS  Google Scholar 

  12. Morandeira A, Boschloo G, Hagfeldt A, Hammarström L (2005) J Phys Chem B 109:19403–19410

    Article  CAS  Google Scholar 

  13. Morandeira A, Boschloo G, Hagfeldt A, Hammarström L (2008) J Phys Chem C 112:9530–9537

    Article  CAS  Google Scholar 

  14. Qin P, Wiberg J, Gibson EA, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L (2010) J Phys Chem C 114:4738–4748

    Article  CAS  Google Scholar 

  15. Le Pleux L, Smeigh AL, Gibson E, Pellegrin Y, Blart E, Boschloo G, Hagfeldt A, Hammarström L, Odobel F (2011) Energy Environ Sci 4:2075–2084

    Article  Google Scholar 

  16. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  17. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  18. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  19. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  20. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  21. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  22. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396–3402

    Article  CAS  Google Scholar 

  25. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51

    Article  CAS  Google Scholar 

  26. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  27. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  Google Scholar 

  28. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  29. Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193

    Article  Google Scholar 

  30. Frisch MJ, et al. (2009) Gaussian09

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Article  CAS  Google Scholar 

  33. Reiher M, Salomon O, Hess AB (2001) Theor Chem Acc 107:48–55

    Article  CAS  Google Scholar 

  34. Kepp KP (2016) Inorg Chem 55:2717–2727

    Article  CAS  Google Scholar 

  35. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  36. Grimme S (2013) J Chem Phys 138:244104

    Article  Google Scholar 

  37. Risthaus T, Hansen A, Grimme S (2014) Phys Chem Chem Phys 16:14408–14419

    Article  CAS  Google Scholar 

  38. Neese F (2012) WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  39. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  40. Jacquemin D, Perpéte EA, Ciofini I, Adamo C (2011) Theor Chem Acc 128:127–136

    Article  CAS  Google Scholar 

  41. Laurent AD, Jacquemin D (2013) Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

  42. Hu B, Chen X, Wang Y, Lu P, Wang Y (2013) Chem – Asian J 8:1144–1151

    Article  CAS  Google Scholar 

  43. Wild M, Griebel J, Hajduk A, Friedrich D, Stark A, Abel B, Siefermann KR (2016) Sci Rep 6:26263

    Article  CAS  Google Scholar 

  44. Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth E, Powell DH, Fischer HE, Helm L, Merbach AE (2001) Science 291:856–859

    Article  CAS  Google Scholar 

  45. Frank P, Benfatto M, Szilagyi RK, D’Angelo P, Longa SD, Hodgson KO (2005) Inorg Chem 44:1922–1933

    Article  CAS  Google Scholar 

  46. Murali M, Palaniandavar M (1996) Transition Met Chem 21:142–148

    Article  CAS  Google Scholar 

  47. Anyfantis GC, Papavassiliou GC, Assimomytis N, Terzis A, Psycharis V, Raptopoulou CP, Kyritsis P, Thoma V, Koutselas IB (2008) Solid State Sci 10:1729–1733

    Article  CAS  Google Scholar 

  48. Szilagyi RK, Lim BS, Glaser T, Holm RH, Hedman B, Hodgson KO, Solomon EI (2003) J Am Chem Soc 125:9158–9169

    Article  CAS  Google Scholar 

  49. Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179–4193

    Article  CAS  Google Scholar 

  50. Persaud L, Langford CH (1985) Inorg Chem 24:3562–3567

    Article  CAS  Google Scholar 

  51. D’Souza F, Villard A, Van Caemelbecke E, Franzen M, Boschi T, Tagliatesta P, Kadish KM (1993) Inorg Chem 32:4042– 4048

    Article  Google Scholar 

  52. Haas M, Liu S.-X., Kahnt A, Leiggener C, Guldi DM, Hauser A, Decurtins S (2007) J Org Chem 72:7533–7543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Zahn and H. Krautscheid thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (project ZA 606/4-1 and KR 1675/9-1). Computational time from the ZIH Dresden is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merker, S., Krautscheid, H. & Zahn, S. Can a temporary bond between dye and redox mediator increase the efficiency of p-type dye-sensitized solar cells?. J Mol Model 24, 317 (2018). https://doi.org/10.1007/s00894-018-3848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3848-8

Keywords

Navigation