Journal of Molecular Modeling

, 24:310 | Cite as

Density functional theory studies on a non-covalent interaction system: hydrogen-bonded dimers of zoledronate

  • Qingzhu Liu
  • Ke Li
  • Gaochao Lv
  • Xi Li
  • Ying Peng
  • Jianguo LinEmail author
  • Ling QiuEmail author
Original Paper


A computational study was carried out to characterize the hydrogen-bonded dimers of Zoledronate (ZOL), which is used widely in treating skeletal diseases. The stable conformations, hydrogen bonding interactions, IR spectra, thermodynamic properties, and electronic characteristics of nine possible ZOL dimers were studied using density functional theory (DFT) at the B3LYP/6–311++G** level. The stability of dimers was determined according to the analyses of total electronic energies and hydrogen bonding interactions. The results showed that both the number and intensity of hydrogen bonds played an important role in determining the stability order of dimers, and the hydrogen bonding interactions in dimers resulted in a red shift of hydroxyl vibration with a corresponding increase in intensity. The calculated thermodynamic properties illustrated that the dimerization process can take place spontaneously at room temperature. Natural bond orbital and atoms in molecules analyses revealed that the nature of hydrogen bonding interactions was attributed to the interactions from lone pair orbital n(A) to the antibonding orbital σ*(D-H), and the interactions were closed-shell interactions in hydrogen-bonded dimers of ZOL.

Graphical abstract

Changes in Gibbs free energy and infrared spectra of ZL in the dimerization process


Zoledronate dimer Hydrogen bonding interaction Stability Thermodynamic property DFT 



This work was supported by the Natural Science Foundation of Jiangsu Province (BK20181128), 333 Project of Jiangsu Province (BRA2016518), Jiangsu Provincial Medical Youth Talent (QNRC2016626, QNRC2016629), Wuxi Municipal Commission of Health and Family Planning (Q201748), and Jiangsu Institute of Nuclear Medicine (QN201706).

Supplementary material

894_2018_3826_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1198 kb)


  1. 1.
    Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19CrossRefGoogle Scholar
  2. 2.
    Coxon FP, Thompson K, Rogers MJ (2006) Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 6:307–312CrossRefGoogle Scholar
  3. 3.
    Spanou A, Lyritis GP, Chronopoulos E, Tournis S (2015) Management of bisphosphonate-related osteonecrosis of the jaw: a literature review. Oral Dis 21:927–936CrossRefGoogle Scholar
  4. 4.
    Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Kavanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117:209–257CrossRefGoogle Scholar
  5. 5.
    Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759CrossRefGoogle Scholar
  6. 6.
    Park J, Rodionov D, De Schutter JW, Lin YS, Tsantrizos YS, Berghuis AM (2017) Crystallographic and thermodynamic characterization of phenylaminopyridine bisphosphonates binding to human farnesyl pyrophosphate synthase. PLoS One 12:e0186447CrossRefGoogle Scholar
  7. 7.
    Stresing V, Fournier PG, Bellahcène A, Benzaïd I, Mönkkönen H, Colombel M, Ebetino FH, Castronovo V, Clézardin P (2011) Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone 48:259–266CrossRefGoogle Scholar
  8. 8.
    Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627CrossRefGoogle Scholar
  9. 9.
    Rugani P, Luschin G, Jakse N, Kirnbauer B, Lang U, Acham S (2014) Prevalence of bisphosphonate-associated osteonecrosis of the jaw after intravenous zoledronate infusions in patients with early breast cancer. Clin Oral Investig 18:401–407CrossRefGoogle Scholar
  10. 10.
    Hosking D, Lyles K, Brown JP, Fraser WD, Miller P, Curiel MD, Devogelaer JP, Hooper M, Su G, Zelenakas K, Pak J, Fashola T, Saidi Y, Eriksen EF, Reid IR (2007) Long-term control of bone turnover in Paget's disease with zoledronic acid and risedronate. J Bone Miner Res 22:142–148CrossRefGoogle Scholar
  11. 11.
    Cundy T, Maslowski K, Grey A, Reid IR (2017) Durability of response to Zoledronate treatment and competing mortality in Paget's disease of bone. J Bone Miner Res 32:753–756CrossRefGoogle Scholar
  12. 12.
    Coleman R, de Boer R, Eidtmann H, Llombart A, Davidson N, Neven P, von Minckwitz G, Sleeboom HP, Forbes J, Barrios C, Frassoldati A, Campbell I, Paija O, Martin N, Modi A, Bundred N (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24:398–405CrossRefGoogle Scholar
  13. 13.
    Almubarak H, Jones A, Chaisuparat R, Zhang M, Meiller TF, Scheper MA (2011) Zoledronic acid directly suppresses cell proliferation andinduces apoptosis in highly tumorigenic prostate and breast cancers. J Carcinog 10:2–13CrossRefGoogle Scholar
  14. 14.
    Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D'Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457CrossRefGoogle Scholar
  15. 15.
    Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y (2003) Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cell Signal 15:719–727CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Zhu W, Liu YL, Wang H, Wang K, Li K, No JH, Ayong L, Gulati A, Pang R, Freitas-Junior L, Morita CT, Old-Field E (2013) Chemo-immunotherapeutic anti-Malarials targeting isoprenoid biosynthesis. ACS Med Chem Lett 4:423–427CrossRefGoogle Scholar
  17. 17.
    Qiu L, Lin JG, Wang LQ, Cheng W, Cao Y, Liu XW, Luo SN (2013) A series of Imidazolyl-containing bisphosphonates with abundant hydrogen-bonding interactions: syntheses, structures, and bone-binding affinity. Aust J Chem 67:192–205CrossRefGoogle Scholar
  18. 18.
    Ebetino FH, Hogan AM, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33CrossRefGoogle Scholar
  19. 19.
    Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci USA 103:7829–7834CrossRefGoogle Scholar
  20. 20.
    Ohno K, Mori K, Orita M, Takeuchi M (2011) Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Curr Med Chem 18:220–233CrossRefGoogle Scholar
  21. 21.
    Mammino L, Kabanda MM (2013) The role of additional O–H⋯O intramolecular hydrogen bonds for acylphloroglucinols' conformational preferencesin vacuoand in solution. Mol Simul 39:1–13CrossRefGoogle Scholar
  22. 22.
    Jun J, Han SY (2017) Theoretical exploration of gas-phase conformers of proton-bound non-covalent heterodimers of guanine and cytosine rare tautomers: structures and energies. Theor Chem Accounts 136:136–145CrossRefGoogle Scholar
  23. 23.
    Mammino L, Kabanda MM (2011) Interplay of intramolecular hydrogen bonds, OH orientations, and symmetry factors in the stabilization of polyhydroxybenzenes. Int J Quantum Chem 111:3701–3716Google Scholar
  24. 24.
    Qiu L, Liu QZ, Wang Y, Wang TF, Yang H, Ju XH, Luo SN, Lin JG (2015) DFT investigations on the structure and properties of MBP dimers and crystal with strong hydrogen-bonding interactions. Struct Chem 26:845–858CrossRefGoogle Scholar
  25. 25.
    Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, LondonGoogle Scholar
  26. 26.
    Chernyshev VV, Shkavrov SV, Paseshnichenko KA, Puryaeva TP, Velikodny YA (2013) Zoledronic acid: monoclinic and triclinic polymorphs from powder diffraction data. Acta Crystallogr C 69:263–266CrossRefGoogle Scholar
  27. 27.
    Ruscica R, Bianchi M, Quintero M, Martinez A, Vega DR (2010) Solid-state forms of zoledronic acid: polymorphism in hydrates. J Pharm Sci 99:4962–4972CrossRefGoogle Scholar
  28. 28.
    Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904CrossRefGoogle Scholar
  29. 29.
    Chen LP (2013) Synthesis, characterization and antitumor activity of metal complexes based on zoledronate and its derivative. Master Thesis. Jiangnan University, WuxiGoogle Scholar
  30. 30.
    Liu QZ, Wang Y, Qiu L, Wang TF, Luo SN, Yuan HL, Lin JG (2015) Theoretical studies on the structural, spectroscopic, thermodynamic, and electronic properties of zoledronic acid. J Struct Chem 56:1313–1324CrossRefGoogle Scholar
  31. 31.
    Liu QZ, Qiu L, Wang Y, Lv GC, Liu GQ, Wang SS, Lin JG (2016) Solvent effect on molecular structure, IR spectra, thermodynamic properties and chemical stability of zoledronic acid: DFT study. J Mol Model 22:84–94CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Nakatsuji H, Caricato M, Li X, Hratchian HP, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima R, Honda Y, Kilao O, Nakai H, Verven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroveror VN, Kobayashi R, Normand J, Ragavachari K, Rendell A, Burant JC, Tomasi SJ, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Strattmann RE, Yazyev O, Austin AJ, Cammi R, Ochetrski JW, Martin RL, Morokuma K, Zakrazawski VG, Votn GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision a.02. Gaussian Inc., Wallingford CTGoogle Scholar
  33. 33.
    Fodil R, Sekkal-Rahal M, Sayede A (2017) Testing the CP-correction procedure with different DFT methods on H-bonding complexes of κ-carrabiose with water molecules. J Mol Model 23:31–40CrossRefGoogle Scholar
  34. 34.
    Gomes JRB, Ribeiro da Silva MAV (2003) Gas-phase thermodynamic properties of dichlorophenols determined from density functional theory calculations. J Phys Chem A 107:869–874CrossRefGoogle Scholar
  35. 35.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Weinhold F (1955) NBO 3.1. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  36. 36.
    Biegler-König FW, Schönbohm J, Bayles DJ (2001) Software news and updates-AIM2000-a program to analyze and visualize atoms in molecules. Comput Chem 22:545–559CrossRefGoogle Scholar
  37. 37.
    Sandhu B, McLean A, Sinha AS, Desper J, Sarjeant AA, Vyas S, Reutzel-Edens SM, Aakeröy CB (2018) Evaluating competing intermolecular interactions through molecular electrostatic potentials and hydrogen-bond propensities. Cryst Growth Des 18:466–478CrossRefGoogle Scholar
  38. 38.
    Murray JS, Politzer P (2017) Molecular electrostatic potentials and noncovalent interactions. WIREs Comput Mol Sci 7:e1326CrossRefGoogle Scholar
  39. 39.
    Dennington RD, Ketith TA, Millam JM (2008) Gaussian Inc., Wallingford, CTGoogle Scholar
  40. 40.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  41. 41.
    Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52–61CrossRefGoogle Scholar
  42. 42.
    Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies: successes and failures. Chem Rev 88:871–897CrossRefGoogle Scholar
  43. 43.
    Perrin CL, Nielson JB (1997) "strong" hydrogen bonds in chemistry and biology. Annu Rev Phys Chem 48:511–544CrossRefGoogle Scholar
  44. 44.
    Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109:2937–2941CrossRefGoogle Scholar
  45. 45.
    Ramos F, Flores H, Hernández-Pérez JM, Sandoval-Lira J, Camarillo EA (2018) The intramolecular hydrogen bond N-H···S in 2,2′-Diaminodiphenyl disulfide: experimental and computational thermochemistry. J Phys Chem A 122:239–248CrossRefGoogle Scholar
  46. 46.
    Liu CG, Su ZM, Guan XH, Muhammad S (2011) Redox and Photoisomerization switching the second-order nonlinear optical properties of a Tetrathiafulvalene derivative across six states: a DFT study. J Phys Chem C 115:23946–23954CrossRefGoogle Scholar
  47. 47.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2016) Competition between intramolecular hydrogen and pnictogen bonds in protonated systems. Theor Chem Accounts 135:140–152CrossRefGoogle Scholar
  48. 48.
    Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000 - a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559CrossRefGoogle Scholar
  49. 49.
    Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiPeople’s Republic of China

Personalised recommendations