Skip to main content
Log in

Interaction-induced electric (hyper)polarizability in the dihydrogen–neon pair: basis set and electron correlation effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5 <  R/a0 < 10 as

$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$

Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5 <  R/a0 < 10 as

$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$

Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cabria I, Isla M, López MJ, Martínez JI, Molina LM, Alonso JA (2011) Hydrogen and hydrogen clusters across disciplines. In: Jena P, Welford Castleman Jr A (eds) Nanoclusters: a bridge across disciplines. Elsevier, Amsterdam

    Google Scholar 

  2. Vigasin AA, Slanina Z (eds) (1998) Molecular complexes in Earth’s, planetary, cometary and interstellar atmospheres. World Scientific, Singapore

  3. Abel M, Frommhold L, Li X, Hunt KLC (2011) J Phys Chem A 115:6805

  4. Li X, Harrison JF, Gustafsson M, Frommhold L, Hunt KLC (2010) J Comput Methods Sci Eng 10:367

  5. Cabria I, López MJ, Alonso JA (2010) Hydrogen storage in nanoporous carbon. In: Sattler KD (ed) Handbook of nanophysics: functional nanomaterials. CRC, Boca Raton

  6. Tang KT, Toennies JP (1982) J Chem Phys 76:2524

  7. Barletta P, Tennyson J, Baker PF (2008) Phys Rev A 78:052707

  8. McKellar ARW (2009) Can J Phys 87:411

  9. Wei H, Le Roy RJ, Wheatley R, Meath WJ (2005) J Chem Phys 122:084321

  10. Bakr BW, Smith DGA, Patkowski K (2013) J Chem Phys 139:144305

  11. Głaz W, Bancewicz T (2003) J Chem Phys 118:6264

  12. Głaz W, Bancewicz T, Godet JL (2005) J Chem Phys 122:224323

  13. Głaz W, Bancewicz T, Godet JL, Maroulis G, Haskopoulos A (2006) Phys Rev A 73:042708

  14. Maroulis G, Haskopoulos A, Głaz W, Bancewicz T, Godet JL (2006) Chem Phys Lett 428:28

  15. Godet J-L, Bancewicz T, Głaz W, Maroulis G, Haskopoulos A (2009) J Chem Phys J Chem Phys 131:204305

  16. Głaz W, Godet J-L, Haskopoulos A, Bancewicz T, Maroulis G (2011) Phys Rev A 84:012503

  17. Bancewicz T, Głaz W, Godet JL, Maroulis G (2008) J Chem Phys 129:124306

  18. Głaz W, Bancewicz T, Godet J-L, Maroulis G, Haskopoulos A (2013) J Chem Phys 138:124307

  19. Shelton DP, Rice JE (1994) Chem Rev 94:3

  20. Kaatz P, Donley EA, Shelton DP (1998) J Chem Phys 108:849

  21. Bishop DM, Maroulis G (1985) J Chem Phys 82:2380

  22. Maroulis G (1998) Chem Phys Lett 289:403

  23. Maroulis G (1999) J Chem Phys 111:6846

  24. Maroulis G (2008) J Chem Phys 129:044314

  25. Lique F (2009) Chem Phys Lett 471:54

  26. Maroulis G (2000) J Phys Chem A 104:4772

    Article  CAS  Google Scholar 

  27. Buckingham AD (1967) Adv Chem Phys 12:107

  28. Haskopoulos A, Maroulis G (2010) Chem Phys 367:127

  29. Boys SF, Bernardi F (1970) Mol Phys 19:55

  30. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, Chichester

  31. Davidson ER, Feller D (1986) Chem Rev 86:681

  32. Zuev MB, Nefediev SE (2004) J Comput Methods Sci Eng 4:481

  33. Fantin PA, Barbieri PL, Canal Neto A, Jorge FE (2007) J Mol Struct (THEOCHEM) 810:103

  34. Baranowska A, Siedlecka M, Sadlej AJ (2007) Theor Chem Accounts 118:959

  35. Camiletti GG, Canal Neto A, Jorge FE, Machado SF (2007) J Mol Struct (THEOCHEM) 910:122

  36. Baranowska-Łaczkowska A, Bartkowiak W, Gora RW, Pawłowski F, Zalesny R (2013) J Comput Chem 34:819

  37. Maroulis G, Bishop DM (1986) Mol Phys 57:359

  38. Maroulis G, Thakkar AJ (1988) J Phys B 21:3819

  39. Maroulis G (2001) Chem Phys Lett 334:207

  40. Maroulis G, Makris C, Hohm U, Goebel D (1977) J Phys Chem A 101:953

  41. Maroulis G (2004) J Chem Phys 121:10519

  42. Maroulis G, Thakkar AJ (1990) J Chem Phys 92:812

  43. Maroulis G (1996) J Chem Phys 101:4949

  44. Xenides D, Maroulis G (2000) Chem Phys Lett 319:618

  45. Maroulis G (2003) Chem Phys 291:81

  46. Maroulis G (1996) Chem Phys Lett 259:654

  47. Maroulis G (1996) J Chem Phys 105:8467

  48. Karamanis P, Maroulis G (2003) Chem Phys Lett 376:403

  49. Baranowska A, Ferńandez B, Rizzo A, Jansík B (2009) Phys Chem Chem Phys 11:9871

  50. Baranowska A, Zawada A, Ferńandez B, Bartkowiak W, Kedziera D, Kaczmarek-Kedziera A (2010) Phys Chem Chem Phys 12:852

  51. Baranowska A, Ferńandez B, Sadlej AJ (2011) Theor Chem Accounts 128:555

  52. Zawada A, Kazmarek-Kedziera A, Bartkowiak W (2011) Chem Phys Lett 503:39

  53. Baranowska-Łaczkowska A, Ferńandez B, Zaleśny R (2013) J Comput Chem 34:275

  54. Kobus J (2007) Comput Lett 3:71

  55. Stiehler J, Hinze J (1995) J Phys B 28:4055

  56. Mohr PJ, Taylor BN, Newell DB (2012) Rev Mod Phys 84:1527

  57. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, revision D.01. Gaussian, Inc., Wallingford

  58. Minemoto S, Tanji H, Sakai H (2003) J Chem Phys 119:7737

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Maroulis.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haskopoulos, A., Maroulis, G. & Bancewicz, T. Interaction-induced electric (hyper)polarizability in the dihydrogen–neon pair: basis set and electron correlation effects. J Mol Model 24, 265 (2018). https://doi.org/10.1007/s00894-018-3801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3801-x

Keywords

Navigation