Advertisement

Journal of Molecular Modeling

, 24:258 | Cite as

Co-operativity in non-covalent interactions in ternary complexes: a comprehensive electronic structure theory based investigation

  • Shyam Vinod Kumar Panneer
  • Mahesh Kumar Ravva
  • Brijesh Kumar Mishra
  • Venkatesan Subramanian
  • Narayanasami Sathyamurthy
Original Paper
  • 93 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

The structure and stability of various ternary complexes in which an extended aromatic system such as coronene interacts with ions/atoms/molecules on opposite faces of the π-electron cloud were investigated using ab initio calculations. By characterizing the nature of the intermolecular interactions using an energy decomposition analysis, it was shown that there is an interplay between various types of interactions and that there are co-operativity effects, particularly when different types of interactions coexist in the same system.

Graphical abstract

Weak OH-π, π-π and van der Waals-π ternary systems are stabilized through dispersion interactions. Cation-π ternary systems are stabilized by through-space electrostatic interactions.

Keywords

Non-covalent interactions Ternary complexes Coronene DFT SAPT QTAIM 

Notes

Acknowledgments

The authors acknowledge the project, Design and Development of Two Dimensional van der Waals Solids and their Applications (No. EMR/2015/000447) funded by Department of Science and Technology (DST), India. M.K.R. thanks the SRM Supercomputer Center, SRM Institute of Science and Technology for providing computational facilities.

References

  1. 1.
    Mishra BK, Bajpai VK, Ramanathan V, Gadre SR, Sathyamurthy N (2008) Cation-π interaction: to stack or to spread. Mol Phys 106:1557–1566.  https://doi.org/10.1080/00268970802175290 CrossRefGoogle Scholar
  2. 2.
    Kolakkandy S, Pratihar S, Aquino AJA, Wang H, Hase WL (2014) Properties of complexes formed by Na+, Mg2+, and Fe2+ binding with benzene molecules. J Phys Chem A 118:9500–9511.  https://doi.org/10.1021/jp5029257 CrossRefPubMedGoogle Scholar
  3. 3.
    Dhindhwal V, Sathyamurthy N (2016) The effect of hydration on the cation-π interaction between benzene and various cations. J Chem Sci 128:1597–1606.  https://doi.org/10.1007/s12039-016-1164-3 CrossRefGoogle Scholar
  4. 4.
    Mahadevi AS, Sastry GN (2013) Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138.  https://doi.org/10.1021/cr300222d CrossRefPubMedGoogle Scholar
  5. 5.
    Mishra BK, Sathyamurthy N (2007) Van der Waals complexes of small molecules with benzenoid rings: influence of multipole moments on their mutual orientation. J Phys Chem A 111:2139–2147.  https://doi.org/10.1021/jp065584r CrossRefPubMedGoogle Scholar
  6. 6.
    Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B 119:11121–11135.  https://doi.org/10.1021/acs.jpcb.5b03005 CrossRefPubMedGoogle Scholar
  7. 7.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825.  https://doi.org/10.1021/cr500344e CrossRefPubMedGoogle Scholar
  8. 8.
    Granatier J, Lazar P, Otyepka M, Hobza P (2011) The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD (T) calculations to plane-wave DFT calculations. J Chem Theory Comput 7:3743–3755.  https://doi.org/10.1021/ct200625h CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thirman J, Head-Gordon M (2017) Efficient implementation of energy decomposition analysis for second-order Møller−Plesset perturbation theory and application to anion−π interactions. J Phys Chem A 121:717–728.  https://doi.org/10.1021/acs.jpca.6b11516 CrossRefPubMedGoogle Scholar
  10. 10.
    Mohan N, Suresh CH, Kumar A, Gadre SR (2013) Molecular electrostatics for probing lone pair–π interactions. Phys Chem Chem Phys 15:18401–18409.  https://doi.org/10.1039/C3CP53379D CrossRefPubMedGoogle Scholar
  11. 11.
    Sherrill CD (2013) Energy component analysis of π interactions. Acc Chem Res 46:1020–1028.  https://doi.org/10.1021/ar3001124 CrossRefPubMedGoogle Scholar
  12. 12.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  13. 13.
    Popelier P (2000) Atoms in molecules: an introduction. Prentice Hall, New YorkCrossRefGoogle Scholar
  14. 14.
    Gadre SR, Pundlik SS (1995) Topographical analysis of electron density and molecular electrostatic potential for cyclopropa- and cyclobutabenzenes. J Am Chem Soc 117:9559–9563.  https://doi.org/10.1021/ja00142a026 CrossRefGoogle Scholar
  15. 15.
    Kumar RM, Elango M, Subramanian V (2010) Carbohydrate-aromatic interactions: the role of curvature on XH···π interactions. J Phys Chem A 114:4313.  https://doi.org/10.1021/jp907547f CrossRefPubMedGoogle Scholar
  16. 16.
    Jemmis ED, Subramanian G, Shrivastava IH, Gadre SR (1994) Closo-boranes, -carboranes, and -silaboranes: a topographical study using electron density and molecular electrostatic potential. J Phys Chem 98:6445–6451.  https://doi.org/10.1021/j100077a005 CrossRefGoogle Scholar
  17. 17.
    Rao JS, Zipse H, Sastry GN (2009) Explicit solvent effect on cation−π interactions: a first principle investigation. J Phys Chem B 113:7225–7236.  https://doi.org/10.1021/jp900013e CrossRefPubMedGoogle Scholar
  18. 18.
    Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2004) Cation-π versus anion-π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427.  https://doi.org/10.1021/jp047534x CrossRefGoogle Scholar
  19. 19.
    Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4 +, and NMe4 +] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903.  https://doi.org/10.1021/jp0525179 CrossRefPubMedGoogle Scholar
  20. 20.
    Rohini K, Sylvinson DMR, Swathi RS (2015) Intercalation of HF, H2O, and NH3 clusters within the bilayers of graphene and graphene oxide: predictions from coronene-based model systems. J Phys Chem A 119:10935–10945.  https://doi.org/10.1021/acs.jpca.5b05702 CrossRefPubMedGoogle Scholar
  21. 21.
    Alberti M, Aguilar A, Pirani F (2009) Cation-π-anion interaction in alkali ion-benzene-halogen ion clusters. J Phys Chem A 113:14741–14748.  https://doi.org/10.1021/jp904852x CrossRefPubMedGoogle Scholar
  22. 22.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol Phys 19:553–556.  https://doi.org/10.1080/00268977000101561 CrossRefGoogle Scholar
  23. 23.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930.  https://doi.org/10.1021/cr00031a008 CrossRefGoogle Scholar
  24. 24.
    Hohenstein EG, Sherrill CD (2010) Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: implementation and application to probe the nature of π−π interactions in linear acenes. J Chem Phys 132:184111.  https://doi.org/10.1063/1.3426316 CrossRefGoogle Scholar
  25. 25.
    Frisch MJ et al (2004) Gaussian 09, revision A.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  26. 26.
    Parrish RM et al (2017) PSI4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput 13:3185–3197.  https://doi.org/10.1021/acs.jctc.7b00174 CrossRefPubMedGoogle Scholar
  27. 27.
    Biegler-Konig F, Schonbohm J, Derdau R, Bayles D, Bade RFW (2000) AIM 2000 version 1. Bielefeld, GermanyGoogle Scholar
  28. 28.
    Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, OxfordCrossRefGoogle Scholar
  29. 29.
    Mpourmpakis G, Froudakis G (2006) Why alkali metals preferably bind on structural defects of carbon nanotubes: a theoretical study by first principles. J Chem Phys 125:204707-1–204707-5.  https://doi.org/10.1063/1.2397679 CrossRefGoogle Scholar
  30. 30.
    Guo BC, Purnell JW, Castleman Jr AW (1990) The clustering reactions of benzene with sodium and lead ions. Chem Phys Lett 168:155–160.  https://doi.org/10.1016/0009-2614(90)85122-S CrossRefGoogle Scholar
  31. 31.
    Dunbar RC (2002) Binding of transition-metal ions to curved π surfaces: corannulene and coronene. J Phys Chem A 106:9809–9819.  https://doi.org/10.1021/jp020313b CrossRefGoogle Scholar
  32. 32.
    Patra N, Esan DA, Kraĺ P (2013) Dynamics of ion binding to graphene nanostructures. J Phys Chem C 117:10750–10754.  https://doi.org/10.1021/jp400835w CrossRefGoogle Scholar
  33. 33.
    Giese M, Albrecht M, Rissanen K (2015) Anion−π interactions with fluoroarenes. Chem Rev 115:8867–8895.  https://doi.org/10.1021/acs.chemrev.5b00156 CrossRefPubMedGoogle Scholar
  34. 34.
    Novák M, Foroutan-Nejad C, Marek M (2016) Modulating electron sharing in ion-π-receptors via substitution and external electric field: a route toward bond strengthening. J Chem Theory Comput 12:3788–3795.  https://doi.org/10.1021/acs.jctc.6b00586 CrossRefPubMedGoogle Scholar
  35. 35.
    Giese M, Albrecht M, Rissanen K (2016) Experimental investigation of anion–π interactions—applications and biochemical relevance. Chem Commun 52:1778–1179.  https://doi.org/10.1039/C5CC09072E CrossRefGoogle Scholar
  36. 36.
    Bagwill C, Anderson C, Sullivan E, Manohara V, Murthy P, Kirkpatrick CC, Stalcup A, Lewis M (2016) Predicting the strength of anion−π interactions of substituted benzenes: the development of anion−π binding substituent constants. J Phys Chem A 120:9235–9243.  https://doi.org/10.1021/acs.jpca.6b06276 CrossRefPubMedGoogle Scholar
  37. 37.
    Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598.  https://doi.org/10.1021/ja025693t CrossRefPubMedGoogle Scholar
  38. 38.
    Slipchenko LV, Gordon MS (2009) Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study. J Phys Chem A 113:2092–2102.  https://doi.org/10.1021/jp808845b CrossRefPubMedGoogle Scholar
  39. 39.
    Prakash M, Gopal Samy K, Subramanian V (2009) Benzene-water (BZWn (n = 1 – 10)) clusters. J Phys Chem A 113:13845–13852.  https://doi.org/10.1021/jp906770x CrossRefPubMedGoogle Scholar
  40. 40.
    Jenness GR, Jordan KD (2009) DF-DFT-SAPT investigation of the interaction of a water molecule to coronene and dodecabenzocoronene: implications for the water-graphite interaction. J Phys Chem C 113:10242–10248.  https://doi.org/10.1021/jp9015307 CrossRefGoogle Scholar
  41. 41.
    Ruuska H, Pakkanen TA (2001) Ab initio study of interlayer interaction of graphite: benzene-coronene and coronene dimer two-layer models. J Phys Chem B 105:9541–9547.  https://doi.org/10.1021/jp011512i CrossRefGoogle Scholar
  42. 42.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110:3349–3351.  https://doi.org/10.1021/jp060571z CrossRefPubMedGoogle Scholar
  43. 43.
    de Barros ALF, Mattioda AL, Korsmeyer JM, Ricca A (2018) Infrared spectroscopy of matrix-isolated neutral and ionized anthracoronene in argon. J Phys Chem A 122:2361–2375.  https://doi.org/10.1021/acs.jpca.7b11467 CrossRefPubMedGoogle Scholar
  44. 44.
    Kysilka J, Rubes M, Grajciar L, Nachtigall P, Bludsky O (2011) Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes. J Phys Chem A 115:11387–11393.  https://doi.org/10.1021/jp205330n CrossRefPubMedGoogle Scholar
  45. 45.
    Frontera A, Quinonero D, Deya PM (2011) Cation–π and anion–π interactions. WIREs Comput Mol Sci 1:440–459.  https://doi.org/10.1002/wcms.14 CrossRefGoogle Scholar
  46. 46.
    Stare J, Hadži D (2014) Cooperativity assisted shortening of hydrogen bonds in crystalline oxalic acid dihydrate: DFT and NBO model studies. J Chem Theory Comput 10:1817–1823.  https://doi.org/10.1021/ct500167n CrossRefPubMedGoogle Scholar
  47. 47.
    Řezać J, Hobza P (2016) Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev 116:5038–5071.  https://doi.org/10.1021/acs.chemrev.5b00526 CrossRefPubMedGoogle Scholar
  48. 48.
    Parthasarathi R, Elango M, Subramanian V, Sathyamurthy N (2009) Structure and stability of water chains (H2O)n, n=5-20. J Phys Chem A 113:3744–3749.  https://doi.org/10.1021/jp806793e CrossRefPubMedGoogle Scholar
  49. 49.
    Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845.  https://doi.org/10.1021/jp2109303 CrossRefPubMedGoogle Scholar
  50. 50.
    Kolaŕ MH, Hobza P (2016) Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev 116:5155–5187.  https://doi.org/10.1021/acs.chemrev.5b00560 CrossRefPubMedGoogle Scholar
  51. 51.
    Williams JH (1993) The molecular electric quadrupole moment and solid-state architecture. Acc Chem Res 26:593–598.  https://doi.org/10.1021/ar00035a005 CrossRefGoogle Scholar
  52. 52.
    Weast RC (1967) Handbook of chemistry and physics. Chemical Rubber, Cleveland, OhioGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shyam Vinod Kumar Panneer
    • 1
  • Mahesh Kumar Ravva
    • 2
  • Brijesh Kumar Mishra
    • 3
  • Venkatesan Subramanian
    • 1
  • Narayanasami Sathyamurthy
    • 4
  1. 1.Chemical LaboratoryCSIR-Central Leather Research InstituteChennaiIndia
  2. 2.Department of ChemistrySRM University – APAmaravatiIndia
  3. 3.Indian Institute of Information TechnologyBangaloreIndia
  4. 4.Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations