Skip to main content
Log in

Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based on molecular dynamics (MD) simulations, the buckling analysis of a perfect carbon nanotorus is presented herein. First of all, the minimum length of single-walled carbon nanotubes (SWCNTs) with different radii is determined at which perfect toroidal CNTs can be formed without any ripple at the inner side of the rings. According to the results, by increasing the radius of SWCNT (r), the radius of its corresponding perfect nanotorus (R) increases. Also, for SWCNTs with various lengths, it is found that the buckling force and strain of related carbon nanotoruses increase by increasing R/r. In addition, as the perfect toroidal CNTs are arranged vertically in a column form in accordance with two different schemes, the effects of increasing the radius (R) and the number of carbon nanotoruses (the height of the column made by nanotoruses) on the buckling force and strain are investigated. Based on the results, as a fixed number of carbon nanotoruses with the same radius are arranged vertically in the column form, the buckling force and strain increase by increasing R/r. By contrast, increasing the height of the column made by carbon nanotoruses with similar radius leads to the reduction of buckling force and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang CL, Shen HS (2006) Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 44(13):2608–2616

    Article  CAS  Google Scholar 

  2. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  4. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM et al (1999) Carbon nanotube actuators. Science 284:1340

    Article  CAS  PubMed  Google Scholar 

  5. Sazonova V, Yaish Y, Üstünel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431(7006):284–287

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5):1727–1752

    Article  CAS  PubMed  Google Scholar 

  7. Zang X, Zhou Q, Chang J, Liu Y, Lin L (2015) Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng 132:192–206

    Article  CAS  Google Scholar 

  8. Iijima S, Ichihashi T, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356(6372):776–778

    Article  CAS  Google Scholar 

  9. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    Article  CAS  PubMed  Google Scholar 

  10. Zhang XB, Zhang XF, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J, Ivanov V, Nagy JB, Lambin P, Lucas AA (1994) The texture of catalytically grown coil-shaped carbon nanotubules. Europhys Lett 27(2):141

    Article  CAS  Google Scholar 

  11. Hod O, Rabani E, Baer R (2003) Carbon nanotube closed-ring structures. Phys Rev B 67(19):195408

    Article  CAS  Google Scholar 

  12. Liu L, Zhang L, Gao H, Zhao J (2011) Structure, energetics, and heteroatom doping of armchair carbon nanotorus. Carbon 49(13):4518–4523

    Article  CAS  Google Scholar 

  13. Liu L, Guo GY, Jayanthi CS, Wu SY (2002) Colossal paramagnetic moments in metallic carbon nanotorus. Phys Rev Lett 88(21):217206

    Article  CAS  PubMed  Google Scholar 

  14. László I, Rassat A (2001) Toroidal and spherical fullerene-like molecules with only pentagonal and heptagonal faces. Int J Quantum Chem 84(1):136–139

    Article  Google Scholar 

  15. Itoh S, Ihara S, Kitakami JI (1993) Toroidal form of carbon C 360. Phys Rev B 47(3):1703

    Article  CAS  Google Scholar 

  16. Nagy CL, Nagy K, Diudea MV (2009) Elongated tori from armchair DWNT. J Math Chem 45(2):452–459

    Article  CAS  Google Scholar 

  17. Itoh S, Ihara S (1994) Isomers of the toroidal forms of graphitic carbon. Phys Rev B 49(19):13970

    Article  CAS  Google Scholar 

  18. Dunlap BI (1992) Connecting carbon tubules. Phys Rev B 46(3):1933

    Article  CAS  Google Scholar 

  19. Haddon RC (1997) Electronic properties of carbon toroids. Nature 388:31–32

    Article  CAS  Google Scholar 

  20. Liu J, Dai H, Hafner JH, Colbert DT, Smalley RE (1997) Fullerene ‘crop circles’. Nature 385:780–781

    Article  CAS  Google Scholar 

  21. Chen N, Lusk MT, van Duin AC, Goddard III WA (2005) Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys Rev B 72(8):085416

    Article  CAS  Google Scholar 

  22. Liu L, Jayanthi CS, Wu SY (2001) Structural and electronic properties of a carbon nanotorus: effects of delocalized and localized deformations. Phys Rev B 64(3):033412

    Article  CAS  Google Scholar 

  23. Feng C, Liew KM (2010) Buckling behavior of armchair and zigzag carbon nanorings. J Comput Theor Nanosci 7(10):2049–2053

    Article  CAS  Google Scholar 

  24. Zhou Z, Wan D, Bai Y, Dou X, Song L, Zhou W, Mo Y, Xie S (2006) Ring formation from the direct floating catalytic chemical vapor deposition. Phys E 33(1):24–27

    Article  CAS  Google Scholar 

  25. Martel R, Shea HR, Avouris P (1999) Rings of single-walled carbon nanotubes. Nature 398(6725):299

    Article  CAS  Google Scholar 

  26. Geng J, Ko YK, Youn SC, Kim YH, Kim SA, Jung DH, Jung HT (2008) Synthesis of SWNT rings by noncovalent hybridization of porphyrins and single-walled carbon nanotubes. J Phys Chem C 112(32):12264–12271

    Article  CAS  Google Scholar 

  27. Ahlskog M, Seynaeve E, Vullers RJ, Van Haesendonck C, Fonseca A, Hernadi K, Nagy JB (1999) Ring formations from catalytically synthesized carbon nanotubes. Chem Phys Lett 300(1):202–206

    Article  CAS  Google Scholar 

  28. Nardelli MB, Bernholc J (1999) Mechanical deformations and coherent transport in carbon nanotubes. Phys Rev B 60(24):R16338

    Article  CAS  Google Scholar 

  29. Liu L, Jayanthi CS, Wu SY (2000) Structural and electronic properties of a carbon nanotorus: effects of non-local vs local deformations. Phys Rev B 64:033412

  30. Rochefort A, Salahub DR, Avouris P (1998) The effect of structural distortions on the electronic structure of carbon nanotubes. Chem Phys Lett 297(1):45–50

    Article  CAS  Google Scholar 

  31. Feng C, Liew KM (2009) A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension. Carbon 47(15):3508–3514

    Article  CAS  Google Scholar 

  32. Glukhova OE, Kondrashov VA, Nevolin VK, Bobrinetsky II, Savostyanov GV, Slepchenkov MM (2016) Prediction of the stability and electronic properties of carbon nanotori synthesized by a high-voltage pulsed discharge in ethanol vapor. J Semicond 50(4):502–507

    Article  CAS  Google Scholar 

  33. Chang IL, Chou JW (2012) A molecular analysis of carbon nanotori formation. J Appl Phys 112(6):063523

    Article  CAS  Google Scholar 

  34. Feng C, Liew KM (2009) Energetics and structures of carbon nanorings. Carbon 47(7):1664–1669

    Article  CAS  Google Scholar 

  35. Liu L, Liu F, Zhao J (2014) Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications. Nano Res 7(5):626–657

    Article  CAS  Google Scholar 

  36. Glukhova OE, Kolesnikova AS, Slepchenkov MM, Savostyanov GV (2015) Prediction of stability for carbon nanotori. In: Proc SPIE 9339, reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications VII, p 93390X. https://doi.org/10.1117/12.2080102

  37. Chen C, Chang JG, Ju SP, Hwang CC (2011) Thermal stability and morphological variation of carbon nanorings of different radii during the temperature elevating process: a molecular dynamics simulation study. J Nanopart Res 13(5):1995–2006

    Article  CAS  Google Scholar 

  38. Liu P, Zhang YW (2010) A theoretical analysis of the effect of a stone-thrower-Wales defect on the stability of carbon nanotube-based nanorings. Carbon 48(8):2225–2230

    Article  CAS  Google Scholar 

  39. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–9

    Article  CAS  Google Scholar 

  40. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14(4):783

    Article  CAS  Google Scholar 

  41. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  CAS  Google Scholar 

  42. Al Badawi A, Al-Haija QA Nano temperature sensor based on the adaptive intermolecular reactive bond order potential model. BRIS J Adv Sci Technol. 2(2):14–18

  43. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  44. Zhang CL, Shen HS (2008) Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys D Appl Phys 41(5):055404

    Article  CAS  Google Scholar 

  45. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

  46. Ansari R, Ajori S, Ameri A (2014) Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem Phys Lett 616:120–125

    Article  CAS  Google Scholar 

  47. Wang Y, Wang XX, Ni XG, Wu HA (2005) Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Comput Mater Sci 32(2):141–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Ansari, R., Hassani, R. et al. Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations. J Mol Model 24, 263 (2018). https://doi.org/10.1007/s00894-018-3786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3786-5

Keywords

Navigation