Skip to main content
Log in

The influence of the configuration of the (C70)2 dimer on its rovibrational spectroscopic properties: a theoretical survey

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A study of the spectroscopic properties of the buckyball dimer (C70)2 was performed, which involved mapping the potential energy curve of this system. The spectroscopic constants of the system were obtained using theoretical Dunham and discrete variable representation methods, as well as the Rydberg analytical function expanded to the sixth degree. Because the fullerenes in the dimer have both hexagonal and pentagonal faces, the properties of (C70)2 were examined for different system configurations. The fullerene dimerization process involves a weak interaction, possibly mediated by short-range components such as van der Waals forces. The differences between the spectroscopic constants of the various (C70)2 configurations and between their dissociation energies De were found to be rather small, which can be attributed to the dominant influence of the hexagonal faces of the fullerenes on the interaction between the fullerenes. These results should aid our understanding of the process of fullerene dimer formation and hopefully facilitate the development and application of new materials based on these dimers.

Comparison of the potential energy curve and a schematic representation for the all (C70)2 fullerenes dimers configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

  2. Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host–guest association. Chem Soc Rev 40:3551. https://doi.org/10.1039/c0cs00225a

    Article  CAS  PubMed  Google Scholar 

  3. Schwerdtfeger P, Wirz LN, Avery J (2015) The topology of fullerenes. Wiley Interdiscip Rev Comput Mol Sci 5:96–145. https://doi.org/10.1002/wcms.1207

    Article  CAS  PubMed  Google Scholar 

  4. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358. https://doi.org/10.1038/347354a0

  5. Mojica M, Alonso JA, Méndez F (2013) Synthesis of fullerenes. J Phys Org Chem 26:526–539. https://doi.org/10.1002/poc.3121

    Article  CAS  Google Scholar 

  6. Zhang R, Murata M, Aharen T et al (2016) Synthesis of a distinct water dimer inside fullerene C70. Nat Chem 8:435–441. https://doi.org/10.1038/nchem.2464

  7. Nomura K, Okada S (2014) An anomalous dipole–dipole arrangement of water molecules encapsulated into C60 dimer. Chem Phys Lett 608:351–354. https://doi.org/10.1016/j.cplett.2014.06.013

  8. Thompson BC, Fréchet JMJ (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77. https://doi.org/10.1002/anie.200702506

  9. Thompson BC, Fréchet JMJ (2008) Polymer–Fulleren-Solarzellen. Angew Chem 120:62–82. https://doi.org/10.1002/ange.200702506

  10. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. https://doi.org/10.1021/cr050149z

    Article  CAS  PubMed  Google Scholar 

  11. Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158. https://doi.org/10.1039/b505361g

    Article  CAS  Google Scholar 

  12. Schroeder BC, Li Z, Brady MA et al (2014) Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew Chem Int Ed 53:12870–12875. https://doi.org/10.1002/anie.201407310

    Article  CAS  Google Scholar 

  13. Segura JL, Martín N (2000) [60]Fullerene dimers. Chem Soc Rev 29:13–25. https://doi.org/10.1039/a903716k

    Article  CAS  Google Scholar 

  14. Menon M, Subbaswamy KR, Sawtarie M (1994) Structure and properties of C60 dimers by generalized tight-binding molecular dynamics. Phys Rev B 49:13966–13969. https://doi.org/10.1103/PhysRevB.49.13966

  15. Fagerström J, Stafström S (1996) Formation of C60 dimers: a theoretical study of electronic structure and optical absorption. Phys Rev B 53:13150–13158. https://doi.org/10.1103/PhysRevB.53.13150

  16. Sabirov DS, Terentyev AO, Bulgakov RG (2014) Polarizability of fullerene [2+2]-dimers: a DFT study. Phys Chem Chem Phys 16:14594. https://doi.org/10.1039/c3cp55528c

    Article  CAS  PubMed  Google Scholar 

  17. Heiney PA, Fischer JE, McGhie AR et al (1991) Heiney et al. reply. Phys Rev Lett 67:1468–1468. https://doi.org/10.1103/PhysRevLett.67.1468

    Article  CAS  PubMed  Google Scholar 

  18. Heiney PA, Fischer JE, McGhie AR et al (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914. https://doi.org/10.1103/PhysRevLett.66.2911

  19. Zettergren H, Rousseau P, Wang Y et al (2013) Formations of dumbbell C118 and C119 inside clusters of C60 molecules by collision with α particles. Phys Rev Lett 110:185501. https://doi.org/10.1103/PhysRevLett.110.185501

  20. Koshino M, Niimi Y, Nakamura E et al (2010) Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat Chem 2:117–124. https://doi.org/10.1038/nchem.482

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zettergren H, Rousseau P et al (2014) Formation dynamics of fullerene dimers C +118 ,C119 +, and C120 +. Phys Rev A 89:38–43. https://doi.org/10.1103/PhysRevA.89.062708

  22. Smith B, Tabin CJ, Monthioux M, Luzzi D (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324. https://doi.org/10.1038/24521

  23. Calvaresi M, Bottoni A, Zerbetto F (2015) Thermodynamics of binding between proteins and carbon nanoparticles: the case of C60@lysozyme. J Phys Chem C 119:28077–28082. https://doi.org/10.1021/acs.jpcc.5b09985

  24. Calvaresi M, Zerbetto F, Ciamician CG et al (2010) Baiting proteins with C60. ACS Nano 4:2283–2299. https://doi.org/10.1021/Nn901809b

  25. Tzoupis H, Leonis G, Durdagi S et al (2011) Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson–Boltzmann surface area calculations. J Comput Aided Mol Des 25:959–976. https://doi.org/10.1007/s10822-011-9475-4

  26. Yin X, Zhao L, Kang S et al (2013) Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules. Nanoscale 5:7341. https://doi.org/10.1039/c3nr01469j

    Article  CAS  PubMed  Google Scholar 

  27. Shoji M, Takahashi E, Hatakeyama D et al (2013) Anti-influenza activity of C60 fullerene derivatives. PLoS One 8(6):e66337. https://doi.org/10.1371/journal.pone.0066337

  28. Nierengarten I, Nierengarten JF (2014) Fullerene sugar balls: a new class of biologically active fullerene derivatives. Chem Asian J 9:1436–1444. https://doi.org/10.1002/asia.201400133

    Article  CAS  PubMed  Google Scholar 

  29. Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035. https://doi.org/10.1039/c1nr10783f

  30. Machado DFS, Silva VHC, Esteves CS et al (2012) Fully relativistic rovibrational energies and spectroscopic constants of the lowest X: (1)0 + g , A′:(1)2u, A:(1)1u, B’: (1)0 u and B: (1)0 + u states of molecular chlorine. J Mol Model 18:4343–4348. https://doi.org/10.1007/s00894-012-1429-9

  31. Machado DFS, Silva RAL, de Oliveira AP et al (2017) A novel analytical potential function for dicationic diatomic molecular systems based on deformed exponential function. J Mol Model 23(6):182. https://doi.org/10.1007/s00894-017-3339-3

  32. Soares Neto JJ, Costa LS (1998) Numerical generation of optimized discrete variable representations. Braz J Phys 28:1–11. https://doi.org/10.1590/S0103-97331998000100001

    Article  CAS  Google Scholar 

  33. Dunham JL (1932) The energy levels of a rotating vibrator. Phys Rev 41:721–731. https://doi.org/10.1103/PhysRev.41.721

    Article  CAS  Google Scholar 

  34. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  35. Chai J, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford

  37. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  38. Boys S, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  39. Rydberg R (1933) Uber einige Potentialkurven des Quecksilberhydrids. Z Phys 80:514–524. https://doi.org/10.1007/BF02057312

    Article  CAS  Google Scholar 

  40. Mundim KC, Tsallis C (1998) Geometry optimization and conformational analysis through generalized simulated annealing. Int J Quantum Chem 58:373–381. https://doi.org/10.1002/(SICI)1097-461X(1996)58:4<373::AID-QUA6>3.0.CO;2-V

    Article  Google Scholar 

  41. de Andrade MD, Mundim KC, Malbouisson LAC (2008) Convergence of the generalized simulated annealing method with independent parameters for the acceptance probability, visitation distribution, and temperature functions. Int J Quantum Chem 108:2392–2397. https://doi.org/10.1002/qua.21736

    Article  CAS  Google Scholar 

  42. da Cunha WF, de Oliveira RM, Roncaratti LF et al (2014) Rovibrational energies and spectroscopic constants for H2O−Ng complexes. J Mol Model 20:2498. https://doi.org/10.1007/s00894-014-2498-8

  43. Rivera Vila HV, Leal LA, Ribeiro LA et al (2012) Spectroscopic properties of the H2+ molecular ion in the 8, 9, 9, 9 and 10 electronic states. J Mol Spectrosc 273:26–29. https://doi.org/10.1016/j.jms.2012.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following Brazilian agencies for financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Distrito Federal (FAPDF), and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG). This research was carried out with the support of the High-Performance Computing Center at the Universidade Estadual de Goiás (UEG). L. Ribeiro and V. H. Carvalho-Silva, in particular, express their gratitude to PROBIP-UEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Ribeiro.

Additional information

This paper belongs to Topical Collection XIX—Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

ESM 1

(DOCX 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.A.L., de Brito, S.F., Machado, D.F.S. et al. The influence of the configuration of the (C70)2 dimer on its rovibrational spectroscopic properties: a theoretical survey. J Mol Model 24, 235 (2018). https://doi.org/10.1007/s00894-018-3780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3780-y

Keywords

Navigation