Skip to main content
Log in

COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations

  • Software Report
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a new version of the simulation software COBRAMM, a program package interfacing widely known commercial and academic software for molecular modeling. It allows a problem-driven tailoring of computational chemistry simulations with effortless ground and excited-state electronic structure computations. Calculations can be executed within a pure QM or combined quantum mechanical/molecular mechanical (QM/MM) framework, bridging from the atomistic to the nanoscale. The user can perform all necessary steps to simulate ground state and photoreactions in vacuum, complex biopolymer, or solvent environments. Starting from ground-state optimization, reaction path computations, initial conditions sampling, spectroscopy simulation, and photodynamics with deactivation events, COBRAMM is designed to assist in characterization and analysis of complex molecular materials and their properties. Interpretation of recorded spectra range from steady-state to time-resolved measurements. Various tools help the user to set up the system of interest and analyze the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Notes

  1. Note, that as Molcas does not create SS-CASPT2 wave functions, the overlaps are obtained using the SA-CASSCF wave functions and subsequently re-scaled with the factor (Ei,SA-CASSCF – Ej,SA-CASSCF)/(Ei,SS-PT2 – Ej,SS-PT2), which follows from the definition of the NAC. In the case of MS-CASPT2, the overlaps are computed using the wave functions resulting from the linear combination of the original CASSCF wavefunctions utilizing the eigenvectors obtained by diagonalizing the MS-CASPT2 Hamiltonian. See the SI for further details.

  2. It should be noted at this point, that the new version of MOLCAS includes analytic derivative couplings for CASSCF wavefunctions.

Abbreviations

2DES:

Two-dimensional electronic spectroscopy

2DUV:

Two-dimensional UV spectroscopy

B3LYP:

Becke’s 3 parameter exchange in combination with Lee, Young and Parr correlation functional

BChl:

Bacteriochlorophyll

BFGS:

Broydon–Fletcher–Goldfarb–Shannon

BH-LYP:

Becke's half-and-half exchange in combination with LYP correlation functional

BP:

Benzophenone

CAM:

Coulomb attenuated method

CAS:

Complete active space

CC:

Coupled cluster

CCSD:

Coupled cluster singles and doubles

CHL:

Chlorophyllide

CI:

Configuration interaction

CoIn:

Conical intersection

CP-MCSCF:

Coupled perturbed multiconfigurational SCF

DFT:

Density functional theory

EOM:

Equation-of-motion

FC:

Franck–Condon

FNO:

Frozen natural orbitals

Fs:

Femtosecond

HF:

Hartree–Fock

hMeOp:

Human melanopsin

HOMO:

Highest occupied molecular orbital

HPC:

High-performance computing

IR:

Infrared

IRC:

Intrinsic reaction coordinate

ISC:

Intersystem crossing

LMP2:

Local MP2

LPOR:

Protochlorophyllide oxidoreductase

LUMO:

Lowest unoccupied molecular orbital

MD:

Molecular dynamics

MEP:

Minimal energy path

MM:

Molecular mechanics

MNDO:

Modified neglect of differential overlap (a semi-empirical method and a program package distributed by Thiel et al.)

MP:

Moller–Plesset (e.g., MP2, MP4)

MRCI:

Multi-reference CI

MS:

Multi state

NAC:

Non-adiabatic coupling

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NVE:

Microcanonical ensemble (constant number of particles, volume and energy)

OMx:

Orthogonalization method X

PCL:

Protochlorophyllide

PCM:

Polarizable continuum model

Ps:

Picosecond

QM:

Quantum mechanics

QY:

Quantum yield

RAS:

Restricted active space

Rh:

Rhodopsin

SA:

State-average

SCF:

Self-consist field

SOS:

Sum-over-states

SqRh:

Squid rhodopsin

SS:

Single state

ssPOR:

LPOR from Synechocystis sp.

SVP:

Single zeta valence basis set including polarization functions

TCL:

Tool command language

TD:

Time-dependent

TDC:

Time-derivative coupling

TDSE:

Time-dependent Schrödinger equation

THS:

Tully–Hammes–Schiffer (surface hopping scheme)

TIP3P:

Three-site transferable intermolecular potential (MM water model)

TS:

Transition state

Urd:

Oxy-uridine

ZPE:

Zero-point energy

References

  1. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian 09 Revision E.01

  2. TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  3. Grimme S, Waletzke M (1999) A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645–5655. https://doi.org/10.1063/1.479866

    Article  CAS  Google Scholar 

  4. Lyskov I, Kleinschmidt M, Marian CM (2016) Redesign of the DFT/MRCI Hamiltonian. J Chem Phys 144:34104. https://doi.org/10.1063/1.4940036

    Article  CAS  Google Scholar 

  5. Aquilante F, Autschbach J, Carlson RK et al (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37:506–541. https://doi.org/10.1002/jcc.24221

    Article  CAS  PubMed  Google Scholar 

  6. Segarra-Martí J, Garavelli M, Aquilante F (2015) Multiconfigurational second-order perturbation theory with frozen natural orbitals extended to the treatment of photochemical problems. J Chem Theory Comput 11:3772–3784. https://doi.org/10.1021/acs.jctc.5b00479

    Article  CAS  PubMed  Google Scholar 

  7. Aquilante F, Malmqvist P-Å, Pedersen TB et al (2008) Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput 4:694–702. https://doi.org/10.1021/ct700263h

    Article  CAS  PubMed  Google Scholar 

  8. Werner H-J, Knowles PJ, Knizia G, et al (2010) MOLPRO, version 2010.1, a package of ab initio programs

  9. Watts JD (2008) An introduction to equation-of-motion and linear-response coupled-cluster methods for electronically excited states of molecules. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer Netherlands, Dordrecht, pp 65–92

    Chapter  Google Scholar 

  10. Kong L, Bischoff FA, Valeev EF (2012) Explicitly correlated R12/F12 methods for electronic structure. Chem Rev 112:75–107. https://doi.org/10.1021/cr200204r

    Article  CAS  PubMed  Google Scholar 

  11. Werner H, Köppl C, Ma Q, Schwilk M (2017) Explicitly correlated local electron correlation methods. Fragmentation. John Wiley & Sons, Ltd, Chichester, UK, pp 1–79

    Google Scholar 

  12. Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907. https://doi.org/10.1021/ja00457a004

    Article  CAS  Google Scholar 

  13. Kolb M, Thiel W (1993) Beyond the MNDO model: methodical considerations and numerical results. J Comput Chem 14:775–789. https://doi.org/10.1002/jcc.540140704

    Article  CAS  Google Scholar 

  14. Tuttle T, Thiel W (2008) OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. Phys Chem Chem Phys 10:2159–2166. https://doi.org/10.1039/B718795E

    Article  CAS  PubMed  Google Scholar 

  15. Tuna D, Lu Y, Koslowski A, Thiel W (2016) Semiempirical quantum-chemical Orthogonalization-corrected methods: benchmarks of electronically excited states. J Chem Theory Comput 12:4400–4422. https://doi.org/10.1021/acs.jctc.6b00403

    Article  CAS  PubMed  Google Scholar 

  16. Altoè P, Stenta M, Bottoni A, Garavelli M (2007) A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor Chem Accounts 118:219–240. https://doi.org/10.1007/s00214-007-0275-9

    Article  CAS  Google Scholar 

  17. Case DA, Babin V, Berryman JT et al (2014) Amber 14 - University of California, San Francisco

  18. Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 195–249

    Chapter  Google Scholar 

  19. Verlet L (1967) Computer experiments on classical fluids. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  20. Andersen HC (1983) Rattle: a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34. https://doi.org/10.1016/0021-9991(83)90014-1

    Article  CAS  Google Scholar 

  21. Bearpark MJ, Robb MA, Bernhard Schlegel H (1994) A direct method for the location of the lowest energy point on a potential surface crossing. Chem Phys Lett 223:269–274. https://doi.org/10.1016/0009-2614(94)00433-1

    Article  CAS  Google Scholar 

  22. Dokukina I, Weingart O (2015) Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys Chem Chem Phys 17(38):25142–25150. https://doi.org/10.1039/c5cp02650d

    Article  CAS  PubMed  Google Scholar 

  23. Mukamel S (1995) Principles of nonlinear optics and spectroscopy. Oxford University Press, Oxford, UK

    Google Scholar 

  24. Nenov A, Rivalta I, Cerullo G et al (2014) Disentangling peptide configurations via two-dimensional electronic spectroscopy: ab initio simulations beyond the Frenkel exciton Hamiltonian. J Phys Chem Lett 5:767–771. https://doi.org/10.1021/jz5002314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nenov A, Beccara S, Rivalta I et al (2014) Tracking conformational dynamics of polypeptides by nonlinear electronic spectroscopy of aromatic residues: a first-principles simulation study. ChemPhysChem 15:3282–3290. https://doi.org/10.1002/cphc.201402374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nenov A, Rivalta I, Mukamel S, Garavelli M (2014) Bidimensional electronic spectroscopy on indole in gas phase and in water from first principles. Comput Theor Chem 1040–1041:295–303. https://doi.org/10.1016/j.comptc.2014.03.031

    Article  CAS  Google Scholar 

  27. Nenov A, Giussani A, Segarra-Martí J et al (2015) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142:212443. https://doi.org/10.1063/1.4921016

    Article  CAS  PubMed  Google Scholar 

  28. Ivan R, Artur N, Giulio C et al (2013) Ab initio simulations of two-dimensional electronic spectra: the SOS//QM/MM approach. Int J Quantum Chem 114:85–93. https://doi.org/10.1002/qua.24511

    Article  CAS  Google Scholar 

  29. Segarra-Martí J, Nenov A, Mukamel S, et al (2018) Towards accurate simulations of two-dimensional electronic spectroscopy. Top Curr Chem submitted

  30. Weingart O (2017) Combined quantum and molecular mechanics (QM/MM) approaches to simulate ultrafast photodynamics in biological systems. Curr Org Chem 21:586–601. https://doi.org/10.2174/1385272821666161108150421

    Article  CAS  Google Scholar 

  31. Tully JC, Preston RK (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J Chem Phys 55(2):562–572

    Article  CAS  Google Scholar 

  32. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071

    Article  CAS  Google Scholar 

  33. Hayashi S, Tajkhorshid E, Schulten K (2009) Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys J 96:403–416. https://doi.org/10.1016/j.bpj.2008.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weingart O, Garavelli M (2012) Modelling vibrational coherence in the primary rhodopsin photoproduct. J Chem Phys 137:523. https://doi.org/10.1063/1.4742814

    Article  CAS  Google Scholar 

  35. Polli D, Weingart O, Brida D et al (2014) Wavepacket splitting and two-pathway deactivation in the photoexcited visual pigment isorhodopsin. Angew Chemie - Int Ed 53(9):2504–2507. https://doi.org/10.1002/anie.201309867

    Article  CAS  Google Scholar 

  36. Quenneville J, Martí TJ (2000) Ab initio multiple spawning: photochemistry from first principles quantum molecular. J Phys Chem A 104:5161–5175. https://doi.org/10.1021/jp994174i

    Article  CAS  Google Scholar 

  37. Zhu C, Jasper AW, Truhlar DG (2005) Non-Born–Oppenheimer Liouville-von Neumann dynamics. Evolution of a subsystem controlled by linear and population-driven decay of mixing with decoherent and coherent switching. J Chem Theory Comput 1:527–540. https://doi.org/10.1021/ct050021p

    Article  CAS  PubMed  Google Scholar 

  38. Granucci G, Persico M (2007) Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys 126:134114. https://doi.org/10.1063/1.2715585

    Article  CAS  PubMed  Google Scholar 

  39. Doltsinis NL (2002) Nonadiabatic dynamics: mean-field and surface hopping. In: Grotendorst J, Marx D, Muramatsu A (eds) Quantum simulations of complex many-body systems: from theory to algorithms, lecture notes. NIC series. John von Neumann Institute for Computing, Jülich, Germany, pp 377–397

    Google Scholar 

  40. Fabiano E, Keal TW, Thiel W (2008) Implementation of surface hopping molecular dynamics using semiempirical methods. Chem Phys 349:334–347. https://doi.org/10.1016/j.chemphys.2008.01.044

    Article  CAS  Google Scholar 

  41. Weingart O (2008) The role of HOOP-modes in the ultrafast photo-isomerization of retinal models. Chem Phys 349(1):348–355

    Article  CAS  Google Scholar 

  42. Schapiro I, Ryazantsev MN, Frutos LM et al (2011) The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J Am Chem Soc 133:3354–3364. https://doi.org/10.1021/ja1056196

    Article  CAS  PubMed  Google Scholar 

  43. Weingart O, Altoè P, Stenta M et al (2011) Product formation in rhodopsin by fast hydrogen motions. Phys Chem Chem Phys 13:3645–3648. https://doi.org/10.1039/c0cp02496a

    Article  CAS  PubMed  Google Scholar 

  44. Fdez Galván I, Delcey MG, Pedersen TB et al (2016) Analytical state-average complete-active-space self-consistent field nonadiabatic coupling vectors: implementation with density-fitted two-electron integrals and application to conical intersections. J Chem Theory Comput 12:3636–3653. https://doi.org/10.1021/acs.jctc.6b00384

    Article  CAS  PubMed  Google Scholar 

  45. Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570. https://doi.org/10.1021/acs.jctc.7b00018

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Liu J, Martinez TJ (2016) Dynamical correlation effects on photoisomerization: ab initio multiple spawning dynamics with MS-CASPT2 for a model trans-protonated Schiff base. J Phys Chem B 120:1940–1949. https://doi.org/10.1021/acs.jpcb.5b09838

    Article  CAS  PubMed  Google Scholar 

  47. Pittner J, Lischka H, Barbatti M (2009) Optimization of mixed quantum-classical dynamics: time-derivative coupling terms and selected couplings. Chem Phys 356:147–152. https://doi.org/10.1016/j.chemphys.2008.10.013

    Article  CAS  Google Scholar 

  48. Ou Q, Bellchambers GD, Furche F, Subotnik JE (2015) First-order derivative couplings between excited states from adiabatic TDDFT response theory. J Chem Phys 142:064114. https://doi.org/10.1063/1.4906941

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Herbert JM (2014) Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. J Chem Phys 141:64104. https://doi.org/10.1063/1.4891984

    Article  CAS  Google Scholar 

  50. Faraji S, Matsika S, Krylov AI (2018) Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: theory, implementation, and validation against multi-reference methods. J Chem Phys 148:44103. https://doi.org/10.1063/1.5009433

    Article  CAS  Google Scholar 

  51. Tajti A, Szalay PG (2009) Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory. J Chem Phys 131:124104. https://doi.org/10.1063/1.3232011

    Article  CAS  PubMed  Google Scholar 

  52. Toniolo A, Olsen S, Manohar L, Martinez TJ (2004) Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Faraday Discuss 127:149–163. https://doi.org/10.1039/b401167h

    Article  CAS  PubMed  Google Scholar 

  53. Senn HM, Thiel W (2007) QM/MM methods for biological systems. Top Curr Chem 268:173–290. https://doi.org/10.1007/128

    Article  CAS  Google Scholar 

  54. Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalton Trans 22:2911–2919

    Article  CAS  Google Scholar 

  55. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728. https://doi.org/10.1021/bi400215w

    Article  CAS  PubMed  Google Scholar 

  56. Lin H, Truhlar DG (2006) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Accounts 117:185–199. https://doi.org/10.1007/s00214-006-0143-z

    Article  CAS  Google Scholar 

  57. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249. https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  58. Warshel A (1976) Bicycle-pedal model for the first step in the vision process. Nature 260:679–683

    Article  CAS  PubMed  Google Scholar 

  59. Stewart JJP (2016) MOPAC2016

  60. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high-performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  61. Dapprich S, Komáromi I, Byun KS et al (1999) A new ONIOM implementation in Gaussian 98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct 461–462:1–21. https://doi.org/10.1016/S0166-1280(98)00475-8

    Article  Google Scholar 

  62. Ponder Jay W, Richards Frederic M (2004) An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 8:1016–1024. https://doi.org/10.1002/jcc.540080710

    Article  Google Scholar 

  63. Metz S, Kästner J, Sokol AA et al (2014) ChemShell-a modular software package for QM/MM simulations. Wiley Interdiscip Rev Comput Mol Sci 4:101–110. https://doi.org/10.1002/wcms.1163

    Article  CAS  Google Scholar 

  64. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  65. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reif MM, Winger M, Oostenbrink C (2013) Testing of the GROMOS force-field parameter set 54A8: structural properties of electrolyte solutions, lipid bilayers, and proteins. J Chem Theory Comput 9:1247–1264. https://doi.org/10.1021/ct300874c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341. https://doi.org/10.1080/0892702031000104887

    Article  CAS  Google Scholar 

  68. Smith W, Yong CW, Rodger PM (2002) DL_POLY: application to molecular simulation. Mol Simul 28:385–471. https://doi.org/10.1080/08927020290018769

    Article  CAS  Google Scholar 

  69. Barbatti M, Ruckenbauer M, Plasser F et al (2014) Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip Rev Comput Mol Sci 4:26–33. https://doi.org/10.1002/wcms.1158

    Article  CAS  Google Scholar 

  70. Altoé P, Stenta M, Bottoni A, Garavelli M (2007) A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor Chem Accounts 118(1):219–240

    Article  CAS  Google Scholar 

  71. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

  72. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Ann Rev Phys Chem 56:389–427. https://doi.org/10.1146/annurev.physchem.55.091602.094410

    Article  CAS  Google Scholar 

  73. Brunk E, Rothlisberger U (2015) Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem Rev 115:6217–6263. https://doi.org/10.1021/cr500628b

    Article  CAS  PubMed  Google Scholar 

  74. Eurenius KP, Chatfield DC, Brooks BR, Hodoscek M (1996) Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. I. Theoretical considerations. Int J Quantum Chem 60:1189–1200. https://doi.org/10.1002/(SICI)1097-461X(1996)60:6<1189::AID-QUA7>3.0.CO;2-W

    Article  CAS  Google Scholar 

  75. König PH, Hoffmann M, and Th. Frauenheim, Cui Q (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 109:9082–9095 . doi: https://doi.org/10.1021/jp0442347

  76. Sloane CS, Hase WL (1977) On the dynamics of state selected uni-molecular reactions: chloroacetylene dissociation and predissociation. J Chem Phys 66(4):1523–1533

    Article  CAS  Google Scholar 

  77. Lan Z, Fabiano E, Thiel W (2009) Photoinduced nonadiabatic dynamics of pyrimidine nucleobases: on-the-fly surface-hopping study with semiempirical methods. J Phys Chem B 113:3548–3555. https://doi.org/10.1021/jp809085h

    Article  CAS  PubMed  Google Scholar 

  78. Du L, Lan Z (2015) An on-the-fly surface-hopping program JADE for nonadiabatic molecular dynamics of polyatomic systems: implementation and applications. J Chem Theory Comput 11:1360–1374. https://doi.org/10.1021/ct501106d

    Article  CAS  PubMed  Google Scholar 

  79. Ruckenbauer M, Barbatti M, Müller T, Lischka H (2013) Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment. J Phys Chem A 117:2790–2799. https://doi.org/10.1021/jp400401f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Polli D, Altoè P, Weingart O et al (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–443. https://doi.org/10.1038/nature09346

    Article  CAS  PubMed  Google Scholar 

  81. Koslowski A, Beck ME, Thiel W (2003) Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach. J Comput Chem 24:714–726

    Article  CAS  PubMed  Google Scholar 

  82. Fabiano E, Thiel W (2008) Nonradiative deexcitation dynamics of 9H-adenine: an OM2 surface hopping study. J Phys Chem A 112:6859–6863

    Article  CAS  PubMed  Google Scholar 

  83. Silva-Junior MR, Thiel W (2010) Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput 6:1546–1564. https://doi.org/10.1021/ct100030j

    Article  CAS  PubMed  Google Scholar 

  84. Sanchez-Garcia E, Doerr M, Thiel W (2010) QM/MM study of the absorption spectra of DsRed.M1 chromophores. J Comput Chem 31:1603–1612. https://doi.org/10.1002/jcc.21443

    Article  CAS  PubMed  Google Scholar 

  85. Spörkel L, Thiel W (2016) Adaptive time steps in trajectory surface hopping simulations. J Chem Phys 144:194108. https://doi.org/10.1063/1.4948956

    Article  CAS  PubMed  Google Scholar 

  86. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235. https://doi.org/10.1021/j100007a062

    Article  CAS  Google Scholar 

  87. Marazzi M, Mai S, Roca-Sanjuán D et al (2016) Benzophenone ultrafast triplet population: revisiting the kinetic model by surface-hopping dynamics. J Phys Chem Lett 7:622–626. https://doi.org/10.1021/acs.jpclett.5b02792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA (2012) Benzophenone photosensitized DNA damage. Acc Chem Res 45:1558–1570. https://doi.org/10.1021/ar300054e

    Article  CAS  PubMed  Google Scholar 

  89. Shah BK, Rodgers MAJ, Neckers DC (2004) The S2 – S1 internal conversion of benzophenone and p-iodobenzophenone. J Phys Chem A 108:6087–6089. https://doi.org/10.1021/jp049615z

    Article  CAS  Google Scholar 

  90. Zvereva E, Segarra-Martí J, Marazzi M et al (2018) The effect of solvent relaxation in the ultrafast time-resolved spectroscopy of solvated benzophenone. Photochem Photobiol Sci 17:323–331. https://doi.org/10.1039/c7pp00439g

    Article  CAS  PubMed  Google Scholar 

  91. Segarra-Martí J, Zvereva E, Marazzi M et al (2018) Resolving the singlet excited state manifold of benzophenone by first-principles simulations and ultrafast spectroscopy. J Chem Theory Comput https://doi.org/10.1021/acs.jctc.7b01208

  92. El-Tahawy M, Nenov A, Weingart O et al (2018) On the relationship between excited state lifetime and isomerization quantum yield in animal rhodopsins: beyond the one-dimensional Landau–Zener model. J Phys Chem Lett 9(12):3315–3322

    Article  CAS  PubMed  Google Scholar 

  93. Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571

    PubMed  Google Scholar 

  94. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367. https://doi.org/10.1038/nature06925

    Article  CAS  PubMed  Google Scholar 

  95. Rinaldi S, Melaccio F, Gozem S et al (2014) Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proc Natl Acad Sci 111:1714 LP–1711719

    Article  CAS  Google Scholar 

  96. Archipowa N, Kutta RJ, Heyes DJ, Scrutton NS (2018) Stepwise hydride transfer in a biological system: insights into the reaction mechanism of the light-dependent protochlorophyllide oxidoreductase. Angew Chemie Int Ed 57:2682–2686. https://doi.org/10.1002/anie.201712729

    Article  CAS  Google Scholar 

  97. Begley TP, Young H (1989) Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 111:3095–3096. https://doi.org/10.1021/ja00190a071

    Article  CAS  Google Scholar 

  98. Heyes DJ, Ruban AV, Wilks HM, Hunter CN (2002) Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci 99:11145 LP–11111150

    Article  Google Scholar 

  99. Heyes DJ, Heathcote P, Rigby SEJ et al (2006) The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. J Biol Chem 281:26847–26853

    Article  CAS  PubMed  Google Scholar 

  100. Heyes DJ, Ruban AV, Hunter CN (2003) Protochlorophyllide oxidoreductase: "dark" reactions of a light-driven enzyme. Biochemistry 42:523–528. https://doi.org/10.1021/bi0268448

    Article  CAS  PubMed  Google Scholar 

  101. Heyes DJ, Hunter CN (2004) Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Biochemistry 43:8265–8271. https://doi.org/10.1021/bi049576h

    Article  CAS  PubMed  Google Scholar 

  102. Townley HE, Sessions RB, Clarke AR et al (2001) Protochlorophyllide oxidoreductase: a homology model examined by site-directed mutagenesis. Proteins Struct Funct Genet 44:329–335. https://doi.org/10.1002/prot.1098

    Article  CAS  PubMed  Google Scholar 

  103. Sytina OA, Alexandre MT, Heyes DJ et al (2011) Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase. Phys Chem Chem Phys 13:2307–2313. https://doi.org/10.1039/C0CP01686A

    Article  CAS  PubMed  Google Scholar 

  104. Sytina OA, Van Stokkum I, Heyes DJ et al (2010) Protochlorophyllide excited-state dynamics in organic solvents studied by time-resolved visible and mid-infrared spectroscopy. J Phys Chem 114(12):4335–4344

    Article  CAS  Google Scholar 

  105. Aquilante F, Pedersen TB, Lindh R (2007) Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J Chem Phys 126:194106. https://doi.org/10.1063/1.2736701

    Article  CAS  PubMed  Google Scholar 

  106. Ke S-H, Baranger HU, Yang W (2007) Electron transport through single conjugated organic molecules: basis set effects in ab initio calculations. J Chem Phys 127:144107. https://doi.org/10.1063/1.2770718

    Article  CAS  PubMed  Google Scholar 

  107. Rohrdanz MA, Herbert JM (2008) Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J Chem Phys 129:34107. https://doi.org/10.1063/1.2954017

    Article  CAS  Google Scholar 

  108. Pepino AJ, Segarra-Marti J, Nenov A et al (2018) UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 20:6877–6890. https://doi.org/10.1039/C7CP08235E

    Article  CAS  PubMed  Google Scholar 

  109. Pepino AJ, Segarra-Martí J, Nenov A et al (2017) Resolving ultrafast photoinduced deactivations in water-solvated pyrimidine nucleosides. J Phys Chem Lett 8:1777–1783. https://doi.org/10.1021/acs.jpclett.7b00316

    Article  CAS  PubMed  Google Scholar 

  110. Improta R, Santoro F, Blancafort L (2016) Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases. Chem Rev 116:3540–3593. https://doi.org/10.1021/acs.chemrev.5b00444

    Article  CAS  PubMed  Google Scholar 

  111. Kong W, He Y, Wu C (2008) Decay pathways of pyrimidine bases: from gas phase to solution BT - radiation induced molecular phenomena in nucleic acids: a comprehensive theoretical and experimental analysis. In: Leszczynski J (ed) Shukla MK. Springer Netherlands, Dordrecht, pp 301–321

    Google Scholar 

  112. Hare PM, Crespo-Hernández CE, Kohler B (2007) Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc Natl Acad Sci 104:435 LP–435440

    Article  Google Scholar 

  113. Hare PM, Middleton CT, Mertel KI et al (2008) Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem Phys 347:383–392. https://doi.org/10.1016/j.chemphys.2007.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nenov A, Mukamel S, Garavelli M, Rivalta I (2015) Two-dimensional electronic spectroscopy of benzene, phenol, and their dimer: an efficient first-principles simulation protocol. J Chem Theory Comput 11:3755–3771. https://doi.org/10.1021/acs.jctc.5b00443

    Article  CAS  PubMed  Google Scholar 

  115. Nenov A, Borrego-Varillas R, Oriana A et al (2018) UV-light-induced vibrational coherences: the key to understand kasha rule violation in trans-azobenzene. J Phys Chem Lett 9:1534–1541. https://doi.org/10.1021/acs.jpclett.8b00152

    Article  CAS  PubMed  Google Scholar 

  116. Tully JC (1998) Mixed quantum-classical dynamics. Faraday Discuss 110:407–419. https://doi.org/10.1039/A801824C

    Article  CAS  Google Scholar 

  117. Hammes-Schiffer S, Tully JC (1994) Proton transfer in solution: molecular dynamics with quantum transitions. J Chem Phys 101:4657–4667. https://doi.org/10.1063/1.467455

    Article  CAS  Google Scholar 

  118. Serrano-Andrés L, Merchán M, Lindh R (2005) Computation of conical intersections by using perturbation techniques. J Chem Phys 122:104107. https://doi.org/10.1063/1.1866096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The COBRAMM project was started by Piero Altoé and Marco Stenta under guidance of Marco Garavelli and Andrea Bottoni at the University of Bologna. The current development of COBRAMM is led by Marco Garavelli and his group in Bologna, in collaboration with Oliver Weingart, Heinrich-Heine University of Düsseldorf. Major contributions to the code were provided by Piero Altoé, Marco Stenta, Oliver Weingart, Artur Nenov, Irina Dokukina, Ivan Rivalta, Javier Segarra-Martí, Emiliano Poli, and Salvatore F. Altavilla. We thank Baptiste Demoulin, Irene Conti, Ana Julieta Pepino and Mohsen El-Tahawy for extensive testing and help with debugging. We furthermore acknowledge the kind help of Francesco Aquilante when implementing certain options of the MOLCAS interface.

I.R. gratefully acknowledges the use of HPC resources of the "Pôle Scientifique de Modélisation Numérique" (PSMN) at the ENS-Lyon (France).

Funding

I.D. is grateful for financial support through "Strategischer Forschungsfonds" of the Heinrich-Heine-University Düsseldorf, project no. F 2013–442-9. J.S.M. acknowledges support from the European Commission through the Marie Curie actions (FP8-MSCA-IF, grant n° 747,662). I.R., M.G. and J.S.M thank the Agence National de la Recherche project FEMTO-2DNA (ANR-15-CE-29-0010).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Marco Garavelli.

Additional information

Notes

The COBRAMM set of routines can be obtained free of charge upon request to the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weingart, O., Nenov, A., Altoè, P. et al. COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J Mol Model 24, 271 (2018). https://doi.org/10.1007/s00894-018-3769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3769-6

Keywords

Navigation