Skip to main content

Advertisement

Log in

Changes to the dissociation barrier of H2 due to buckling induced by a chemisorbed hydrogen on a doped graphene surface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An effectiveway of enhancing hydrogen storage on adsorbent materials can be induced by the hydrogen spill-over mechanism, although to date there is no general consensus which satisfactorily explains the mechanism. In this work, a possible reaction path to explain hydrogen adsorption is shown. Density-functional calculations were used to study the dissociation of molecular hydrogen near to a stressed region, as a consequence of chemisorbed hydrogen at the graphene-nitrogen surface. We found that as a result of the buckling induced by the chemisorbed hydrogen, the dissociation barrier of molecular hydrogen diminished by 0.84 eV. The chemisorbed hydrogen is the final state in the spill-over mechanism on a graphene-nitrogen decorated with palladium clusters. This effect helps to create hydrogen nanoislands that may change the diffusion and detrapping of H. An electronic structure analysis suggests that these systems occasionally present metallic or semiconductor behavior.

Hydrogen dissociation and adsorption process via buckling defect

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miura Y, Kasai H, Dino W, Sugimoto T (2003) First principles studies for the dissociative adsorption of H2 on graphene. J Appl Phys 72:995–997

    CAS  Google Scholar 

  2. Arellano J, Molina L, Rubio A, Alonso J (2000) Density functional study of adsorption of molecular hydrogen on graphene layers. J Chem Phys 112:8114–8119

    Article  CAS  Google Scholar 

  3. Okamoto Y, Miyamoto Y (2001) Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J Phys Chem B 105:3470–3474

    Article  CAS  Google Scholar 

  4. Lai-Peng M, Zhong-Shuai W, Li J, Er-Dong W, Wen-Cai R, HuiMing C (2009) Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrog Energy 34:2329–2332

    Article  CAS  Google Scholar 

  5. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48:630–635

    Article  CAS  Google Scholar 

  6. Feynman R, Jr FV (1963) The theory of a general quantum system interacting with a linear dissipative system. Ann Phys 24:118–173

    Article  Google Scholar 

  7. Casolo S, Løvvik O, Martinazzo R, Tantardini G (2009) Understanding adsorption of hydrogen atoms on graphene. J Chem Phys 054704:130

    Google Scholar 

  8. McKay H, Wales D, Jenkins S, Verges J, de Andres P (2010) Hydrogen on graphene under stress: molecular dissociation and gap opening. Phys Rev B 81:075425

    Article  CAS  Google Scholar 

  9. Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613

    Article  CAS  PubMed  Google Scholar 

  10. Koskinen P, Malola S, Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502

    Article  CAS  PubMed  Google Scholar 

  11. Subrahmanyam K, Kumar P, Maitra U, Govindaraj A, Hembram K, Waghmare U, Rao C (2011) Chemical storage of hydrogen in few-layer graphen. Proc Natl Acad Sci USA 108:2674–2677

    Article  PubMed  Google Scholar 

  12. Lin C, Feng Y, Xiao Y, Durr M, Huang X, Xu X, Zhao R, Wang E, Li XZ, Hu Z (2015) Direct observation of ordered configurations of hydrogen adatoms on graphene. Nano Lett 15:903–908

    Article  CAS  PubMed  Google Scholar 

  13. Conner W, Falconer J (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Article  CAS  Google Scholar 

  14. Parambhath V, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833

    Article  CAS  PubMed  Google Scholar 

  15. Gao H, Song L, Guo W, Huang L, Yang D, Wang F, Zuo Y, Fan ZLX, Gao W, Vajtai R, Hackenberg K, Ajaya P (2012) A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon 50:4476–4482

    Article  CAS  Google Scholar 

  16. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  17. Shao Y, Zhang S, Engelhard M, Li G, Shao G, Wang Y, Liu IA, Lin Y (2010) Nitrogen–doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496

    Article  CAS  Google Scholar 

  18. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J Mater Chem 21:8038–8044

    Article  CAS  Google Scholar 

  19. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  20. Zhou J, Chen Q, Han Y, Zheng S (2015) Enhanced catalytic hydrodechlorination of 2,4-dichlorophenol over Pd catalysts supported on nitrogen-doped graphene. RSC Adv 5:91363–91371

    Article  CAS  Google Scholar 

  21. Lv R, Li Q, Botello-Méndez A, Hayashi T, Wang B, Berkdemir A, Hao Q, Elas A, Cruz-Silva R, Gutiérrez H, Kim Y, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier J, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyondsingle substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rangel E, Sansores E (2014) Theoretical study of hydrogen adsorption on nitrogen doped graphene decorated with palladium clusters. Int J Hydrog Energy 39:6558–6566

    Article  CAS  Google Scholar 

  23. Rangel E, Sansores E, Vallejo E, Hernández-Hernández A, López- Pérez P (2016) Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Phys Chem Chem Phys 18:33158–33170

    Article  CAS  PubMed  Google Scholar 

  24. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Corso AD, de Giron-coli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A, Smogunov A, Umari P, Wentzcovitch R (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  PubMed  Google Scholar 

  26. Troullier N, Martins J (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  27. Gonze X, Kackell P, Scheffler M (1990) Ghost states for separable, norm-conserving, Iab initioP pseudopotentials. Phys Rev B 41:12264–12267

    Article  CAS  Google Scholar 

  28. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128:134106

    Article  CAS  PubMed  Google Scholar 

  30. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  31. Lide D (2000) Handbook of chemistry and physics. CRC Press LLC, Boca Raton

    Google Scholar 

  32. Kittel C (1990) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  33. Borodin VA, Vehvilinen TT, Ganchenkova MG, Nieminen RM (2011) Hydrogen transport on graphene: competition of mobility and desorption. Phys Rev B 84:075486–15

    Article  CAS  Google Scholar 

  34. Yu W, Zhu Z, Niu C-Y, Li C, Cho J-H, Jia Y (2016) Anomalous doping effect in black phosphorene using first-principles calculations. Chem Chem Phys 17:16351–16358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was performed at the CNMS and the Oak Ridge National Laboratory Leadership Computing Facility which is a US DOE Office of Science User Facility at ORNL Supported under contract no. DE-AC05-00OR22725. F. Martínez-Farías was partially supported by grant UAEHPTC764, DSA /5116/178021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Martínez-Farías or E. Rangel Cortes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Hernández, A., Vallejo, E., Martínez-Farías, F. et al. Changes to the dissociation barrier of H2 due to buckling induced by a chemisorbed hydrogen on a doped graphene surface. J Mol Model 24, 244 (2018). https://doi.org/10.1007/s00894-018-3763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3763-z

Keywords

Navigation