Skip to main content
Log in

Accuracy of auxiliary density functional theory hybrid calculations for activation and reaction enthalpies of pericyclic reactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Auxiliary density functional theory (ADFT) hybrid calculations are based on the variational fitting of the Coulomb and Fock potential and, therefore, are free of four-center electron repulsion integrals. So far, ADFT hybrid calculations have been validated successfully for standard enthalpies of formation. In this work the accuracy of ADFT hybrid calculations for the description of pericyclic reactions was quantitatively validated at the B3LYP/6-31G*/GEN-A2* level of theory. Our comparison with conventional Kohn-Sham density functional theory (DFT) results shows that the DFT and ADFT activation and reaction enthalpies are practically indistinguishable. A systematic study of various functionals (PBE, B3LYP, PBE0, CAMB3LYP, CAMPBE0 and HSE06) and basis sets (6-31G*, DZVP-GGA and aug-cc-pVXZ; X = D, T and Q) revealed that the ADFT HSE06/aug-cc-pVTZ/GEN-A2* level of theory yields best balanced accuracy for the activation and reaction enthalpies of the studied pericyclic reactions. With the successfully validate ADFT composite approach consisting of PBE/DZVP-GGA/GEN-A2* structure and transition state optimizations and single-point HSE06/aug-cc-pVTZ/GEN-A2* energy calculations, an accurate, reliable and efficient computational approach for the study of pericyclic reactions in systems at the nanometer scale is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  3. Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71:4993–4999

    Article  CAS  Google Scholar 

  4. Mintmire JW, Dunlap BI (1982) Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys Rev A 25:88–95

    Article  CAS  Google Scholar 

  5. Mintmire JW, Sabin JR, Trickey SB (1982) Local-density-functional method in two-dimensionally periodic systems. Hydrogen and berillium monolayers. Phys Rev B 26:1743–1753

    Article  CAS  Google Scholar 

  6. Laikov DN (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem Phys Lett 281:151–156

    Article  CAS  Google Scholar 

  7. Köster AM, Reveles JU, del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121:3417–3424

    Article  CAS  PubMed  Google Scholar 

  8. Birkenheuer U, Gordienko AB, Nasluzov VA, Fuchs‐Rohr MK, Rösch N (2005) Model density approach to the Kohn–Sham problem: Efficient extension of the density fitting technique. Int J Quantum Chem 102:743–761

    Article  CAS  Google Scholar 

  9. Bienvenu AV, Knizia G (2018) Efficient treatment of local meta-generalized gradient density functionals via auxiliary density expansion: the density fitting (DF) J + X approximation. J Chem Theory Comput 14:1297–1303

    Article  CAS  PubMed  Google Scholar 

  10. Köster AM, Goursot A, Salahub DR (2003) In: McCleverty J, Meyer TJ, Lever B (eds) Comprehensive coordination chemistry II: From biology to nanotechnology, vol 2, Chapter 2.57. Elsevier, Amsterdam, pp 681–685

  11. Geudtner G, Janetzko F, Köster AM, Vela A, Calaminici P (2006) Parallelization of the deMon2k code. J Comp Chem 27:483–490

    Article  CAS  Google Scholar 

  12. Mejía-Rodriguez D, Köster AM (2014) Robust and efficient variational fitting of Fock exchange. J Chem Phys 141:124114

    Article  CAS  PubMed  Google Scholar 

  13. Mejía-Rodriguez D, Huang X, del Campo JM, Köster AM (2015) Hybrid functionals with variationally fitted exact exchange. Advances in quantum chemistry, vol 71. Academic, New York

  14. Delesma FA, Geudtner G, Mejía-Rodríguez D, Calaminici P, Köster AM (2018) Range-separated hybrid functionals with variational fitted exact exchange. J Chem Theory Comput (submitted)

  15. Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A 109:2012–2018

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y, Lynch BJ, Truhlar DG (2005) Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Phys Chem Chem Phys 7:43–52

    Article  CAS  Google Scholar 

  17. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  CAS  Google Scholar 

  18. Guner V, Khuong KS, Leach AG, Lee PS, Bartberger MD, Houk KN (2003) A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: the performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries. J Phys Chem A 107:11445–11459

    Article  CAS  Google Scholar 

  19. Köster AM, Geudtner G, Álvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espíndola J, Domínguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Mejía-Rodríguez D, Reveles JU, Vásquez-Pérez J, Vela A, Zuñiga-Gutiérrez B, and Salahub DR (2018) deMon2k Version 5.0. the deMon developers, Cinvestav, Mexico City. See also: www.demon-software.com

  20. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  21. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) DFT optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 126:044108

    Article  CAS  PubMed  Google Scholar 

  22. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  24. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  26. Yanai TDP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  27. Lange AW, Rohrdanz MA, Herbert JM (2008) Charge-transfer excited states in a π-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory. J Phys Chem B 112:6304–6308

    Article  CAS  PubMed  Google Scholar 

  28. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Article  CAS  PubMed  Google Scholar 

  29. del Campo JM, Köster AM (2008) A hierarchical transition state search algorithm. J Chem Phys 129:024107

    Article  CAS  PubMed  Google Scholar 

  30. Bofill JM (1994) Updated Hessian matrix and the restricted step method for locating transition structures. J Comp Chem 15:1–11

    Article  CAS  Google Scholar 

  31. Culot P, Dive G, Nguyen VH, Ghuysen JM (1992) A quasi-Newton algorithm for first-order saddle-point location. Theor Chim Acta 82:189–205

    Article  CAS  Google Scholar 

  32. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  33. Cruz-Olvera D, de la Trinidad VA, Geudtner G, Vásquez-Pérez JM, Calaminici P, Köster AM (2015) Transition State searches in metal clusters by first principle methods. J Phys Chem A 119:1494–1501

    Article  CAS  PubMed  Google Scholar 

  34. Vásquez-Pérez JM, Gamboa GU, Köster AM, Calaminici P (2009) The discovery of unexpected isomers in sodium heptamers by Born-Oppenheimer molecular dynamics. J Chem Phys 131:124126

    Article  CAS  PubMed  Google Scholar 

  35. Delgado-Venegas RI, Mejía-Rodríguez D, Flores-Moreno R, Calaminici P, Koster AM (2016) Analytic second derivatives from auxiliary density perturbation theory. J Chem Phys 145:224103

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Lu X, MRM I, Echegoyen L (2015) Endohedral fullerenes in endohedral metallofullerenes: basics and applications. CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgments

JRGP and FAD gratefully acknowledge funding as a Sistema Nacional de Investigadores (SNI) assistant (15228) and Consejo Nacional de Ciencia y Tecnología (CONACyT) PhD fellow (421457), respectively. This work was financially supported by the CONACyT Project CB-252658 and by the infrastructure Project GIC-268251. The authors are also thankful to Q.I. Luis Lopez-Sosa for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrizia Calaminici or Andreas M. Köster.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Pérez, J.R., Delesma, F.A., Calaminici, P. et al. Accuracy of auxiliary density functional theory hybrid calculations for activation and reaction enthalpies of pericyclic reactions. J Mol Model 24, 223 (2018). https://doi.org/10.1007/s00894-018-3759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3759-8

Keywords

Navigation