Skip to main content
Log in

Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper investigates the effect of temperature on the elastic modulus of carbon nanotube-polyethylene (CNT-PE) nanocomposite and its interface using molecular dynamics (MD) simulations, by utilizing the second-generation polymer consistent force field (PCFF). Two CNTs—armchair and zigzag—were selected as reinforcing nano-fillers, and amorphous PE was used as the polymer matrix. For atomistic modelling of the nanocomposite, the commercially available code Materials Studio 8.0 was used and all other MD simulations were subsequently performed using the open source code Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To obtain the elastic modulus of the nanocomposite, stress-strain curves were drawn at different temperatures by performing uniaxial deformation tests on the nanocomposite material, whereas the curvatures of the interfacial interaction energy vs. strain curves were utilized to obtain Young’s modulus of the interface. In addition, the glass transition temperatures of the polymer matrix and nanocomposites were also evaluated using density-temperature curves. Based on the results, it is concluded that, irrespective of temperature condition, a nanocomposite reinforced with CNT of larger chirality (i.e., armchair) yields a higher value of Young’s modulus of the nanocomposite and its interface. It was also found that, at the phase transition (from a glassy to a rubbery state) temperature (i.e., glass transition temperature), Young’s moduli of the polymer matrix, nanocomposite, and its interface drop suddenly. The results obtained from MD simulations were verified with results obtained from continuum-based rule-of-mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6a,b
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Lourie O, Wagner HD (1998) Evaluation of Young’s Modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13:2418–2422

    Article  CAS  Google Scholar 

  3. Salvetat J-P, Bonard J-M, Thomson NH (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69:255–260

    Article  CAS  Google Scholar 

  4. Yakobson BI, Avouris P (2001) Mechanical properties of carbon nanotubes. In: Dresselhaus MS, Dresselhaus G, Avouris Ph (eds) Carbon nanotubes. Springer, Berlin, pp 287–327

  5. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998

    Article  CAS  Google Scholar 

  6. Ebbesen TW, Lezec HJ, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  CAS  Google Scholar 

  7. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  8. Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35:L77

    Article  CAS  Google Scholar 

  9. Cadek M, Coleman JN, Barron V et al (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125

    Article  CAS  Google Scholar 

  10. Gijny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65:2300–2313

    Article  CAS  Google Scholar 

  11. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  12. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  CAS  Google Scholar 

  13. Al-Ostaz A, Pal G, Mantena PR, Cheng A (2008) Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents. J Mater Sci 43:164–173

    Article  CAS  Google Scholar 

  14. Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Appl Mater Interfaces 6:6098–6110

    Article  CAS  PubMed  Google Scholar 

  15. Mandal A, Singh SP, Prasad R (2016) Dynamic mechanical characterization of CNT–PP nanocomposites. J Mol Model 22:1–7

    Article  CAS  Google Scholar 

  16. Sharma S, Chandra R, Kumar P, Kumar N (2016) Molecular dynamics simulation of functionalized SWCNT–polymer composites. J Compos Mater 21998316628973

  17. Rouhi S, Alizadeh Y, Ansari R (2016) On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations. J Mol Model 22:41

    Article  CAS  PubMed  Google Scholar 

  18. Lv Q, Wang Z, Chen S et al (2017) Effects of single adatom and Stone-Wales defects on the elastic properties of carbon nanotube/polypropylene composites: a molecular simulation study. Int J Mech Sci 131–132:527–534

    Article  Google Scholar 

  19. Alian AR, Meguid SA (2018) Large-scale atomistic simulations of CNT-reinforced thermoplastic polymers. Compos Struct 191:221–230

    Article  Google Scholar 

  20. Ozer T, Cabuk S (2018) First-principles study of the structural, elastic and electronic properties of SbXI (X= S, se, Te) crystals. J Mol Model 24:66

    Article  CAS  PubMed  Google Scholar 

  21. Chawla R, Sharma S (2017) Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol 144:169–177

    Article  CAS  Google Scholar 

  22. Zheng Q, Xue Q, Yan K et al (2008) Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. J Appl Phys 103:44302

    Article  CAS  Google Scholar 

  23. Yang S, Yu S, Kyoung W et al (2012) Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53:623–633

    Article  CAS  Google Scholar 

  24. Zhang Y, Zhuang X, Muthu J et al (2014) Composites: part B load transfer of graphene / carbon nanotube / polyethylene hybrid nanocomposite by molecular dynamics simulation. Compos Part B 63:27–33

    Article  CAS  Google Scholar 

  25. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Srivastava A, Kumar D (2017) A continuum model to study interphase effects on elastic properties of CNT/GS-nanocomposite. Mater Res Express 4:25036

    Article  Google Scholar 

  27. Rafiee R, Mahdavi M (2016) Characterizing nanotube-polymer interaction using molecular dynamics simulation. Comput Mater Sci 112:356–363

    Article  CAS  Google Scholar 

  28. Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2:647–650

    Article  CAS  Google Scholar 

  29. Velasco-Santos C, Martínez-Hernández AL, Fisher FT et al (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475

    Article  CAS  Google Scholar 

  30. Qi D, Hinkley J, He G (2005) Molecular dynamics simulation of thermal and mechanical properties of polyimide–carbon-nanotube composites. Model Simul Mater Sci Eng 13:493–507

    Article  CAS  Google Scholar 

  31. Li C, Strachan A (2011) Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer 52:2920–2928

    Article  CAS  Google Scholar 

  32. Material Studio 8.0. Accelrys Inc, San Diego

  33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  34. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987

    Article  CAS  Google Scholar 

  35. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168

    Article  Google Scholar 

  36. Peacock A (2000) Handbook of polyethylene: structures: properties, and applications. CRC, Boca Raton

    Book  Google Scholar 

  37. Nayebi P, Zaminpayma E (2016) A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys Lett A 380:628–633

    Article  CAS  Google Scholar 

  38. Frankland SJV, Harik VM, Odegard GM et al (2003) The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661

    Article  CAS  Google Scholar 

  39. Mahboob M, Zahabul Islam M (2013) Molecular dynamics simulations of defective CNT-polyethylene composite systems. Comput Mater Sci 79:223–229

    Article  CAS  Google Scholar 

  40. Hendra PJ, Jobic HP, Holland-Moritz K (1975) Low temperature crystallization in polyethylene and the value of Tg J Polym Sci Part C Polym Lett 13:365–368

    Article  CAS  Google Scholar 

  41. Lam R, Geil PH (1981) Amorphous linear polyethylene: annealing effects J Macromol Sci Part B Phys 20:37–58

    Article  Google Scholar 

  42. Koyama A, Yamamoto T, Fukao K, Miyamoto Y (2001) Molecular dynamics studies on local ordering in amorphous polyethylene. J Chem Phys 115:560–566

    Article  CAS  Google Scholar 

  43. Brown D, Clarke JHR, Okuda M, Yamazaki T (1994) The preparation of polymer melt samples for computer simulation studies. J Chem Phys 100:6011–6018

    Article  CAS  Google Scholar 

  44. Awasthi AP (1989) An atomistic study of the mechanical behavior of carbon nanotubes and nanocomposite interfaces. J Chem Inf Model 53:160

    Google Scholar 

  45. Zuberi MJS, Esat V (2015) Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling. Compos Part B 71:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Kumar, D. Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations. J Mol Model 24, 178 (2018). https://doi.org/10.1007/s00894-018-3716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3716-6

Keywords

Navigation