Advertisement

Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides

Original Paper
  • 4 Downloads

Abstract

The reaction mechanism of Ru-catalyzed cycloisomerization of 2-alkynylanilides to 3-substituted indole or 2-substituted indole was analyzed at the B3LYP level of density functional theory. The solvation effect of the system was also considered by SMD model. The calculation results show that the reaction system first forms a ruthenium π-alkyne complex. On the one hand, the cyclization reaction of the amino group and the alkyne carbon in the reaction precursor complex directly forms the 2-substituted indole product. On the other hand, the benzene ring in the reaction complex undergoes 1,2-carbon migration on the C≡C triple bond to form the vinylidene complex. After cyclization and hydrogen transfer, the catalyst is regenerated to obtain 3-substituted indole product. The latter reaction process has relatively lower activation free energy and is also the main reaction channel for this reaction, which is consistent with published experimental results. This study provides a reasonable reaction mechanism and effective experimental supplement.

Keywords

Ruthenium-catalyzed 2-alkynylanilides Cycloisomerization Density functional theory 

Notes

Acknowledgments

This work was supported by Longyuan young creative talents to support projects, Gansu Province (2014-98). The authors are grateful to the reviewers for their invaluable suggestions.

References

  1. 1.
    Gribble GW (2016) Indole ring synthesis: from natural products to drug discovery. Wiley, ChichesterGoogle Scholar
  2. 2.
    Kochanowska-Karamyan AJ, Hamann MT (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110:4489–4497CrossRefGoogle Scholar
  3. 3.
    Wolfe JP (2013) Topics in heterocyclic chemistry series. Springer, Berlin, p V32Google Scholar
  4. 4.
    Taillefer M, Ma D (2013)Topics in organometallic chemistry series. Springer: Berlin, V 46Google Scholar
  5. 5.
    Ball CJ, Willis MC (2013) Synthesis of aromatic benzo-fused five- and six-membered heterocycles via palladium- and copper-catalyzed C-X bond-forming reactions. In transition-metal-mediated aromatic ring construction. Wiley, Inc. Hoboken, NJ, pp. 645–682Google Scholar
  6. 6.
    Taber DF, Tirunahari PK (2011) Indole synthesis: a review and proposed classification. Tetrahedron 67:7195–7210CrossRefGoogle Scholar
  7. 7.
    Vicente R (2011) Recent advances in indole syntheses: new routes for a classic target. Org Biomol Chem 9:6469–6480CrossRefGoogle Scholar
  8. 8.
    Liu T, Fu H (2012) Copper-catalyzed synthesis of N-heterocyclic compounds. Synthesis 44:2805–2824CrossRefGoogle Scholar
  9. 9.
    Platon M, Amardeil R, Djakovitch L, Hierso JC (2012) Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones. Chem Soc Rev 41:3929–3968CrossRefGoogle Scholar
  10. 10.
    Shiri M (2012) Indoles in multicomponent processes (MCPs). Chem Rev 112:3508–3549CrossRefGoogle Scholar
  11. 11.
    Inman M, Moody CJ (2013) Indole synthesis—something old. something new. Chem Sci 4:29–41Google Scholar
  12. 12.
    Barbour PM, Marholz LJ, Chang L, Xu W, Wang X (2014) Gold approaches to polycyclic indole alkaloids. Chem Lett 43:572–578CrossRefGoogle Scholar
  13. 13.
    Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ (2015) Late transition metal-catalyzed hydroamination and hydroamidation. Chem Rev 115:2596–2697CrossRefGoogle Scholar
  14. 14.
    Rubio-Marques P, Rivero-Crespo MA, Leyva-Perez A, Corma A (2015) Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J Am Chem Soc 137:11832–11837CrossRefGoogle Scholar
  15. 15.
    Allegretti PA, Huynh K, Ozumerzifon TJ, Ferreira EM (2016) Lewis acid mediated vinylogous additions of enol nucleophiles into an α,β-unsaturated platinum carbene. Org Lett 18:64–67CrossRefGoogle Scholar
  16. 16.
    Qu CH, Zhang S, Du H, Zhu C (2016) Cascade photoredox/gold catalysis: access to multisubstituted indoles via aminoarylation of alkynes. Chem Commun 52:14400–14403CrossRefGoogle Scholar
  17. 17.
    Minami H, Kanayama T, Tanaka R, Okamoto N, Sueda T, Yanada R (2016) Regioselective arylative ring-closing reaction of 2-alkynylphenyl derivatives: formation of arylated benzoxazin-2-ones, benzoxazin-2-amines and 2,3-disubstituted indoles. Eur J Org Chem 2016:5990–6000CrossRefGoogle Scholar
  18. 18.
    Ilies L, Isomura M, Yamauchi SI, Nakamura T, Nakamura E (2017) Indole synthesis via cyclative formation of 2,3-dizincioindoles and regioselective electrophilic trapping. J Am Chem Soc 139:23–26CrossRefGoogle Scholar
  19. 19.
    Kumaran E, Fan WY, Leong WK (2014) [Cp*IrCl2]2 catalyzed formation of 2,2′-biindoles from 2-ethynylanilines. Org Lett 16:1342–1345CrossRefGoogle Scholar
  20. 20.
    Kanno H, Nakamura K, Noguchi K, Shibata Y, Tanaka K (2016) Rhodium-catalyzed cycloisomerization of 2-silylethynyl phenols and anilines via 1,2-silicon migration. Org Lett 18:1654–1657CrossRefGoogle Scholar
  21. 21.
    Quan Y, Zhang J, Xie Z (2013) Three-component [2+2+1] cross-cyclotrimerization of carboryne, unactivated alkene, and trimethylsilylalkyne co-mediated by Zr and Ni. J Am Chem Soc 135:18742–18745CrossRefGoogle Scholar
  22. 22.
    Yeung CF, Chung LH, Lo HS, Chiu CH, Cai J, Wong CY (2015) Isolation of ruthenium–indoline and −indole zwitterion complexes: insight into the metal-induced cyclization of aniline-tethered alkynes and strategy to lower the activation barrier of metal−vinylidene formation. Organometallics 34:1963–1968CrossRefGoogle Scholar
  23. 23.
    Lim W, Rhee YH (2013) A flexible metal-catalyzed synthesis of highly substituted aryl phenanthrenyl selenides. Eur J Org Chem 2013:460–464CrossRefGoogle Scholar
  24. 24.
    Fernandez FE, Puerta MC, Valerga P (2013) Functionalized N-heterocyclic carbene nonspectator ligands upon internal alkyne activation reactions. Inorg Chem 52:6502–6509CrossRefGoogle Scholar
  25. 25.
    Pickup OJS, Khazal I, Smith EJ, Whitwood AC, Lynam JM, Bolaky K, King TC, Rawe BW, Fey N (2014) Computational discovery of stable transition-metal vinylidene complexes. Organometallics 33:1751–1761CrossRefGoogle Scholar
  26. 26.
    Otsuka M, Tsuchida N, Ikeda Y, Lambert N, Nakamura R, Mutoh Y, Ishii Y, Takano K (2015) Theoretical study on internal alkyne/vinylidene isomerization in group 8 transition-metal complexes. Organometallics 34:3934–3943CrossRefGoogle Scholar
  27. 27.
    Ikeda Y, Kodama S, Tsuchida N, Ishii Y (2015) Competition between vinylidene rearrangement and 1,2-insertion of carbon-disubstituted internal alkynes at a Cp*Ir(III) complex. Dalton Trans 44:17448–17452CrossRefGoogle Scholar
  28. 28.
    Youn SW, Lee SR (2015) Unusual 1,2-aryl migration in Pd(II)-catalyzed aza-Wacker-type cyclization of 2-alkenylanilines. Org Biomol Chem 13:4652–4656CrossRefGoogle Scholar
  29. 29.
    Youn SW, Ko TY, Jang MJ, Jang SS (2015) Silver(I)-mediated C-H amination of 2-alkenylanilines: unique solvent-dependent migratory aptitude. Adv Synth Catal 357:227–234CrossRefGoogle Scholar
  30. 30.
    Youn SW, Lee SR, Kim YA, Kang DY, Jang MJ (2016) Unusual 1,2-aryl migration and depalladation of alkylpalladium intermediates containing a syn-β-hydrogen atom. Chemistry Select 1:5749–5757Google Scholar
  31. 31.
    Watanabe T, Mutoh Y, Saito S (2017) Ruthenium-catalyzed cycloisomerization of 2-alkynylanilides: synthesis of 3-substituted indoles by 1,2-carbon migration. J Am Chem Soc 139:7749–7752CrossRefGoogle Scholar
  32. 32.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Stephens PJ, Devlin FJ, Chabalowski CF (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  34. 34.
    Zhang XH, Wang KT, Zhang T (2016) Density functional theory investigation of the ruthenium-catalyzed cycloisomerization of silicon-tethered 1,7-enynes. Comput Theor Chem 1083:46–52CrossRefGoogle Scholar
  35. 35.
    Mazzone G, Alberto ME, Sicilia E (2014) Theoretical mechanistic study of the formic acid decomposition assisted by a Ru(II)-phosphine catalyst. J Mol Model 20:2250CrossRefGoogle Scholar
  36. 36.
    Said RB, Essalah K, MAK S, Hussein K, Boughdiri S, Chermette H (2017) DFT study of isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2. J Mol Model 23:146CrossRefGoogle Scholar
  37. 37.
    García JS, Alary F, Boggio-Pasqua M, Dixon IM, Heully JL (2016) Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes? J Mol Model 22:284CrossRefGoogle Scholar
  38. 38.
    Hernandez JG, Silva AR, Thangarasu P et al (2015) Theoretical and experimental studies of phenol oxidation by ruthenium complex with N, N, N-tris(benzimidazol-2yl-methyl)amine. J Mol Model 21:224CrossRefGoogle Scholar
  39. 39.
    Yamamoto Y (2017) Theoretical study on ruthenium-catalyzed hydrocarbamoylative cyclization of 1,6-diyne with dimethylformamide. Organometallics 36:1154–1163CrossRefGoogle Scholar
  40. 40.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  41. 41.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  42. 42.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  43. 43.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  45. 45.
    Pump E, Slugovc C, Cavallo L, Poater A (2015) Mechanism of the Ru-allenylidene to Ru−indenylidene rearrangement in ruthenium precatalysts for olefin metathesis. Organometallics 34:3107–3111CrossRefGoogle Scholar
  46. 46.
    Bruneau C, Dixneuf PH (1999) Metal vinylidenes in catalysis. Acc Chem Res 32:311–323CrossRefGoogle Scholar
  47. 47.
    Peron D, Romero A, Dixneuf PH (1995) Functional ruthenium(II) allenylidene and diynyl (arene) derivatives formed by activation of a diyne via a Ru:C:C:C:C:CR2 intermediate. Organometallics 14:3319–3326CrossRefGoogle Scholar
  48. 48.
    Furstner A, Picquet M, Bruneau C, Dixneuf PH (1998) Cationic ruthenium allenylidene complexes as a new class of performing catalysts for ring closing metathesis. Chem Commun 1998:1315–1316Google Scholar
  49. 49.
    del Rio I, van Koten G (1999) Ring-opening metathesis polymerization of norbornene catalyzed by a Ru(II)-vinylidene complex. Tetrahedron Lett 40:1401–1404Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xinghui Zhang
    • 1
  • Shanshan Li
    • 1
  • Xiaoli Wei
    • 1
  • Yun Lei
    • 1
  1. 1.College of Chemical EngineeringLanzhou University of Arts and ScienceLanzhouChina

Personalised recommendations