Synthesis, characterization, and NMR studies of 1,2,3-triazolium ionic liquids: a good perspective regarding cytotoxicity

  • Nicolas Glanzmann
  • Arturene M. L. Carmo
  • Luciana M. R. Antinarelli
  • Elaine S. Coimbra
  • Luiz Antônio S. Costa
  • Adilson D. da Silva
Original Paper
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)


Ionic liquids (ILs) have been extensively studied and are considered green solvents capable of replacing traditional organic solvents. In this study, seven 1,2,3-triazolium derivative ILs have been synthesized. In order to study the effect of the cation nature on the ILs cytotoxicity, their structures were first identified by 1H, 13C NMR 1D, and 2D spectroscopy. DFT calculations have also been performed in a way to help to provide an insightful structural analysis from 13C NMR spectroscopy. The comparison made with the NMR experimental shifts was quite important to show that the 1,2,3-triazolium derivatives have the expected structure shown here. The in vitro cytotoxicity of ILs toward macrophages showed that among the compounds tested, five did not exhibit expressive cytotoxicity on mammalian cells. Besides the well-established relationship between the carbonic chain size of the cation and the cytotoxicity, the log P of the compounds predicts that the toxicity increases with the size of the carbon chain, demonstrating that the most cytotoxic compound is also the most lipophilic one. The low cytotoxicity effect of ILs on mammalian cells points to their potential application in large-scale by industry.

Graphical abstract

Seven triazolium ILs were synthesized and their in vitro cytotoxicity on murine macrophages showed a relationship with the carbonic chain size.


Ionic liquids DFT calculations NMR Lypophilia 



The authors wish to thank FAPEMIG (Process APQ-03830-16 and APQ-02068-14), CNPq, and CAPES for financial support. Also, LASC, ESC, and ADS would like to thank CNPq for the fellowship grant.

Supplementary material

894_2018_3682_MOESM1_ESM.docx (525 kb)
ESM 1 (DOCX 524 kb)


  1. 1.
    Neto BAD, Spencer J (2012) The impressive chemistry, applications and features of ionic liquids: properties, catalysis & catalysts and trends. J Braz Chem Soc 23:987–1007CrossRefGoogle Scholar
  2. 2.
    Nulwala HB, Tang CN, Kail BW et al (2011) Probing the structure-property relationship of regioisomeric ionic liquids with click chemistry. Green Chem 13:3345–3349CrossRefGoogle Scholar
  3. 3.
    Lan W, Liu C-F, Sun R-C (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59:8691–8701CrossRefPubMedGoogle Scholar
  4. 4.
    Khan SS, Hanelt S, Liebscher J (2009) Versatile synthesis of 1, 2, 3-triazolium-based ionic liquids. ARKIVOC 12:193–208Google Scholar
  5. 5.
    Aizpurua JM, Fratila RM, Monasterio Z, Perez-Esnaola N, Andreieff E, Irastorza A, Sagartzazu-Aizpurua M (2014) Triazolium cations: from the "click" pool to multipurpose applications. New J Chem 38:474–480CrossRefGoogle Scholar
  6. 6.
    Plechkovaa NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefGoogle Scholar
  7. 7.
    Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, New York, p 132Google Scholar
  8. 8.
    Dupont J, De Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692CrossRefPubMedGoogle Scholar
  9. 9.
    Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350CrossRefGoogle Scholar
  10. 10.
    Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRefPubMedGoogle Scholar
  11. 11.
    Bourbigou HO, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A-Gen 373:1–56CrossRefGoogle Scholar
  12. 12.
    Yacob Z, Liebscher J (2011) 1,2,3-Triazolium salts as a versatile new class of ionic liquids. In: Handy S (ed) Ionic liquids - classes and properties. IntechOpen, London, pp 3–18Google Scholar
  13. 13.
    Jeong Y, Ryu J-S (2010) Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the Baylis−Hillman reaction. J Organomet Chem 75:4183–4191CrossRefGoogle Scholar
  14. 14.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRefPubMedGoogle Scholar
  15. 15.
    Mudraboyina BP, Obadia MM, Abdelhedi-Miladi I, Allaoua I, Drockenmuller E (2015) Versatile click functionalization of poly(1,2,3-triazolium ionic liquid)s. Eur Polym J 62:331–337CrossRefGoogle Scholar
  16. 16.
    Kohsaka Y, Yamamoto K, Kitayama T (2015) Stereoregular poly(methyl methacrylate) with double-clickable omega-end: synthesis and click reaction. Polym Chem 6:3601–3607CrossRefGoogle Scholar
  17. 17.
    Mirjafari A (2018) Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials. Chem Commun 54:2944–2961CrossRefGoogle Scholar
  18. 18.
    Nulwala H, Burke DJ, Khan A et al (2010) N-vinyltriazoles: a new functional monomer family through click chemistry. Macromolecules 43:5474–5477CrossRefGoogle Scholar
  19. 19.
    Radošević K, Cvjetko M, Kopjar N et al (2013) In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish channel catfish ovary (CCO) cell line. Ecotoxicol Environ Saf 92:112–118CrossRefPubMedGoogle Scholar
  20. 20.
    Tan WQ, Li Q, Dong F, Zhang JJ, Luan F, Wei LJ, Chen Y, Guo ZY (2018) Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: synthesis, characterization, and antifungal property. Carbohydr Polym 182:180–187CrossRefPubMedGoogle Scholar
  21. 21.
    Tseng MC, Yuan TC, Li Z, Chu YH (2016) Crowned ionic liquids for biomolecular interaction analysis. Anal Chem 88:10811–10815CrossRefPubMedGoogle Scholar
  22. 22.
    Wang P, Zhang D, Zhou YY, Li Y, Fang HG, Wei HB, Ding YS (2018) A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 24:787–795CrossRefGoogle Scholar
  23. 23.
    Raiguel S, Depuydt D, Vander Hoogerstraete T, Thomas J, Dehaen W, Binnemans K (2017) Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalton Trans 46:5269–5278CrossRefPubMedGoogle Scholar
  24. 24.
    Carmo AML, Stroppa PHF, Corrales CNR et al (2014) Synthesis of 1,2,3-triazolium-based ionic liquid and preliminary pretreatment to enhance hydrolysis of sugarcane bagasse. J Braz Chem Soc 25:2088–2093Google Scholar
  25. 25.
    Feldman AK, Colasson B, Fokin VV (2004) One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated Azides. Org Lett 6:3897–3899CrossRefPubMedGoogle Scholar
  26. 26.
    van Eikema Hommes NJR, Clark T (2005) Regression formulae for ab initio and density functional calculated chemical shifts. J Mol Model 11:175–185CrossRefPubMedGoogle Scholar
  27. 27.
    Sun X-W, Xu P-F, Zhang Z-Y (1998) 1H and 13C NMR spectroscopy of substituted 1,2,3-triazoles. Magn Reson Chem 36:459–460CrossRefGoogle Scholar
  28. 28.
    Bugelski PJ, Atif U, Molton S et al (2000) A strategy for primary high throughput cytotoxicity screening in pharmaceutical toxicology. Pharm Res 17:1265–1272CrossRefPubMedGoogle Scholar
  29. 29.
    Ekwall B, Silano V, Paganuzzi-Stammati A, Zucco F (1990) Toxicity tests with mammalian cell cultures. In: Bourdeau P et al (eds) Short-term toxicity tests for non-genotoxic effects. Wiley, New YorkGoogle Scholar
  30. 30.
    Petkovic M, Seddon KR, Rebeloa LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403CrossRefPubMedGoogle Scholar
  31. 31.
    Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  32. 32.
    Steiner I, Stojanovic N, Bolje A, Brozovic A, Polancec D, Ambriovic-Ristov A, Stojkovic MR, Piantanida I, Eljuga D, Kosmrlj J, Osmak M (2016) Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol Oncol 50:280–288CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM–A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506CrossRefGoogle Scholar
  34. 34.
    Lal S, Díez-Gonzalez S (2011) [CuBr(PPh3)3] for Azide−alkyne cycloaddition reactions under strict click conditions. J Organomet Chem 76:2367–2373CrossRefGoogle Scholar
  35. 35.
    Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-Triazoles via a copper(I)-catalyzed three-component reaction. Org Lett 23:4223–4225CrossRefGoogle Scholar
  36. 36.
    Kidwai M, Jain A (2011) Regioselective synthesis of 1,4-disubstituted triazoles using bis[(L)prolinato-N,O]Zn complex as an efficient catalyst in water as a sole solvent. Appl Organomet Chem 25:620–625CrossRefGoogle Scholar
  37. 37.
    Stroppa PHF, Antinarelli LMR, Carmo AML et al (2017) Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonenses. Bioorg Med Chem 25:3034–3045CrossRefPubMedGoogle Scholar
  38. 38.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefPubMedGoogle Scholar
  39. 39.
    Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586CrossRefGoogle Scholar
  40. 40.
    Schuchardt KL, Didier BT, Elsethagen T et al (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052CrossRefPubMedGoogle Scholar
  41. 41.
    Barros CL, De Oliveira PJP, Jorge FE et al (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972Google Scholar
  42. 42.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110–114115CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09 revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  44. 44.
    Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27:789–807CrossRefGoogle Scholar
  45. 45.
    Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  46. 46.
    Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química, I.C.EUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Instituto Federal do Sul de MinasMuzambinhoBrazil
  3. 3.Departamento de Parasitologia, Microbiologia e Imunologia, I.C.BUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  4. 4.NEQC – Núcleo de Estudos em Química Computacional, Departamento de Química, I.C.E.Universidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations