Skip to main content
Log in

Construction of a molecular structure model of mild-oxidized Chinese lignite using Gaussian09 based on data from FTIR, solid state 13C-NMR

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Great progress has been made in the detection of fractions from oxidized lignite, but no molecular structures are reported. A molecular structure model of oxidized Shengli lignite was constructed using ultimate analysis, 13C nuclear magnetic resonance spectrum (NMR), and Fourier transform infrared spectroscopy (FTIR). Parameters are derived from PeakFit4.12 and MestReNova software. Gaussian09 software was used to optimize the model and calculate the FTIR, and the calculated spectrogram is consistent with the experimental one. The molecular formula of the structure model was C96H95O45N, and aromatic rings were mainly linked by oxygen containing functional groups. The electrostatic potential of the structure model was analyzed to explain the great solubility and a good deal of carboxyl acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miura K (1996) Energy Fuel 10:1196–1201

    Article  CAS  Google Scholar 

  2. Miura K, Mae K (1996) Fuel Energy Abstracts 37:425

  3. Mae K (1997) Solubilization of an australian brown coal oxidized with hydrogen peroxide in conventionally used solvents at room temperature. Abstr Pap Am Chem Soc 4:102

  4. Tahmasebi A, Jiang Y, Yu J, Li X, Lucas J (2015) Fuel Process Technol 129:213–221

    Article  CAS  Google Scholar 

  5. Mae K, Maki T, Okutsu H, Miura K (2000) Fuel 79:417–425

    Article  CAS  Google Scholar 

  6. Karaca H, Ceylan K (1997) Fuel Process Technol 50:19–33

    Article  CAS  Google Scholar 

  7. Liu ZX, Liu ZC, Zong ZM, Wei XY, Wang J, Lee CW (2003) Energy Fuel 17:424–426

    Article  CAS  Google Scholar 

  8. Liu F, Wei X, Zhu Y, Gui J, Wang Y, Fan X, Zhao Y, Zong Z, Zhao W (2013) Fuel 109:316–324

    Article  CAS  Google Scholar 

  9. Liu J, Wei X, Wang Y, Zhang D, Wang T, Lv J, Gui J, Qu M, Zong Z (2015) Fuel 142:268–273

    Article  CAS  Google Scholar 

  10. Vlčková Z, Grasset L, Antošová B, Pekař M, Kučerík J (2009) Soil Biol Biochem 41:1894–1901

    Article  CAS  Google Scholar 

  11. David J, Šmejkalová D, Hudecová Š, Zmeškal O, Wandruszka RV, Gregor T (2014) Spring 3:156

    Article  CAS  Google Scholar 

  12. Mathews JP, Chaffee AL (2012) Fuel 96:1–14

    Article  CAS  Google Scholar 

  13. Wender I (1976) Catal Rev 14:97–129

    Article  CAS  Google Scholar 

  14. Given PH (1959) Nature 184:980–981

    Article  CAS  Google Scholar 

  15. Wiser WH (1984) Conversion of Bituminous Coal to Liquids and Gases: Chemistry and Representative Processes. Springer, Netherlands

  16. Solomon PR (1981) Coal structure and thermal decomposition. ACS Symposium SerIes 169:61–71

  17. Shinn JH (1984) Fuel 63:1187–1196

    Article  CAS  Google Scholar 

  18. Feng L, Zhao G, Zhao Y, Zhao M, Tang J (2017) Fuel 203:924–931

    Article  CAS  Google Scholar 

  19. Wang J, He Y, Li H, Yu J, Xie W, Wei H (2017) Fuel 203:764–773

    Article  CAS  Google Scholar 

  20. Xu F, Pan S, Liu C, Zhao D, Liu H, Wang Q, Liu Y (2017) RSC Adv 7:41512–41519

    Article  CAS  Google Scholar 

  21. Meng X, Gao M, Chu R, Miao Z, Wu G, Bai L, Liu P, Yan Y, Zhang P (2017) Chin J Chem Eng 25:1314–1321

    Article  CAS  Google Scholar 

  22. Mathews JP, van Duin ACT, Chaffee AL (2011) Fuel Process Technol 92:718–728

    Article  CAS  Google Scholar 

  23. Nomura M, Artok L, Murata S, Yamamoto A, Hama H, Gao H, Kidena K (1998) Energy Fuel 12:512–523

    Article  CAS  Google Scholar 

  24. Xiao J, Chen S (1998) Chin Sci Bull 43:1048–1050

    Article  CAS  Google Scholar 

  25. Machnikowska H, Krztoń A, Machnikowski J (2002) Fuel 81:245–252

    Article  CAS  Google Scholar 

  26. Qi X, Wang D, Xin H, Qi G (2014) Spectrosc Lett 47:495–503

    Article  CAS  Google Scholar 

  27. Tian B, Qiao YY, Tian YY, Xie KC, Liu Q, Zhou HF (2016) Fuel Process Technol 154:210–218

    Article  CAS  Google Scholar 

  28. Li W, Zhu Y, Wang G, Jiang B (2016) Fuel 185:298–304

    Article  CAS  Google Scholar 

  29. Qian L, Zhao Y, Sun S, Che H, Chen H, Wang D (2014) Fuel Process Technol 118:327–334

    Article  CAS  Google Scholar 

  30. Sönmez Ö, Yıldız Ö, Çakır MÖ, Gözmen B, Giray ES (2018) Fuel 212:12–18

    Article  CAS  Google Scholar 

  31. Mani D, Arunan E (2013) Phys Chem Chem Phys 15:14377–14383

    Article  CAS  PubMed  Google Scholar 

  32. Wu J, Liu J, Yuan S, Wang Z, Zhou J, Cen K (2016) Energy Fuel 30:7118–7124

    Article  CAS  Google Scholar 

  33. Hagelin H, Murray JS, Politzer P, Brinck T, Berthelot M (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Natural Science Foundation of China (Grant No. 51574237, 51274197), and the 111 Project (No.B12030) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Feng, L., Jiang, X. et al. Construction of a molecular structure model of mild-oxidized Chinese lignite using Gaussian09 based on data from FTIR, solid state 13C-NMR. J Mol Model 24, 135 (2018). https://doi.org/10.1007/s00894-018-3677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3677-9

Keywords

Navigation