Skip to main content
Log in

Theoretical investigations into the intermolecular hydrogen-bonding interactions of N-(hydroxymethyl)acetamide dimers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures of the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers have been fully optimized at B3LYP/6–311++G** level. The intermolecular hydrogen bonding interaction energies have been calculated using the B3LYP/6–311++G**, B3LYP/6–311++G(2df,2p), MP2(full)/6–311++G** and MP2(full)/6–311++G(2df,2p) methods, respectively. The results show that the O–H···O, N–H···O, O–H···N, and C–H···O hydrogen bonding interactions could exist in N-(hydroxymethyl)acetamide dimers, and the O–H···O, N–H···O, and O–H···N hydrogen bonding interactions could be stronger than C–H···O. The three-dimensional network structure formed by ceramide molecules through intermolecular hydrogen bonding interactions may be the main reason why the stratum corneum of skin could prevent foreign substances from entering our body, as is in accordance with the experimental results. The stability of hydrogen-bonding interactions follow the order of (a) > (b) ≈ (c) > (d) > (e) ≈ (f) > (g) > (h). The analyses of the energy decomposition, frequency, atoms in molecules (AIM), natural bond orbital (NBO), and electron density shift are used to further reveal the nature of the complex formation. In the range of 263.0–328.0 K, the complex is formed via an exothermic reaction, and the solvent with lower temperature and dielectric constant is favorable to this process.

The structures and the O–H···O=C, N–H···O=C and C–H···O=C H-bonding interactions in the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers were investigated using the B3LYP and MP2(full) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Potter B (1966) The physiology of the skin. Annu Rev Physiol 28:159–176

  2. Brazil M (2004) Breaking the skin barrier. Nat Rev Drug Discov 3:112–112

    Article  CAS  Google Scholar 

  3. Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51:702–747

    Article  CAS  PubMed  Google Scholar 

  4. Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    Article  CAS  PubMed  Google Scholar 

  5. Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65:180–191

    Article  CAS  PubMed  Google Scholar 

  6. Wertz PW, Downing DT (1982) Glycolipids in mammalian epidermis: structure and function in the water barrier. Science 217:1261–1262

    Article  CAS  PubMed  Google Scholar 

  7. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s–49s

  8. Elias PM, Menon GK (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26

    Article  CAS  PubMed  Google Scholar 

  9. Gray GM, White RJ, Yardley HJ (1982) Lipid composition of the superficial stratum corneum cells of the epidermis. Br J Dermatol 106:59–63

    Article  CAS  PubMed  Google Scholar 

  10. Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. NeuroMolecular Med 12:320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitner EB, Futerman AH (2013) Neuronal forms of Gaucher disease. Handb Exp Pharmacol 216:405–419

    Article  CAS  Google Scholar 

  12. Horres CR, Hannun YA (2012) The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res 37:1137–1149

    Article  CAS  PubMed  Google Scholar 

  13. Coderch L, López O, de la Maza A, Parra JL (2003) Ceramides and skin function. Am J Clin Dermatol 2:107–129

    Article  Google Scholar 

  14. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Article  CAS  PubMed  Google Scholar 

  15. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  PubMed  Google Scholar 

  16. Solimannejad M, Scheiner S (2008) Complexes pairing hypohalous acids with nitrosyl hydride blue shift of a NH bond that is uninvolved in a H-bond. J Phys Chem A 112:4120–4124

    Article  CAS  PubMed  Google Scholar 

  17. Solimannejad M, Scheiner S (2006) Hydrogen bonding of radicals: interaction of dimethyl ether with HOO, HOOH, and HOO. Chem Phys Lett 42938–42942

  18. Li Q, An X, Gong B (2007) Cooperativity between OH···O and CH···O hydrogen bonds involving dimethyl sulfoxide-H2O-H2O complex. J Phys Chem A 111:10166–10169

    Article  CAS  PubMed  Google Scholar 

  19. Pascher I (1976) Molecular arrangements in sphingolipids conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    Article  CAS  PubMed  Google Scholar 

  20. Raudenkolb S, Wartewig S, Neubert RHH (2005) Polymorphism of ceramide 6:a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(α-hydroxyoctadecanoyl)-phytosphingosine. Chem Phys Lipids 133:89–102

    Article  CAS  PubMed  Google Scholar 

  21. Anishkin A, Sukharev S, Colombini M (2006) Searching for the molecular arrangement of transmembrane ceramide channels. Biophys J 90:2414–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kooijman EE, Vaknin D, Bu W, Joshi L, Kang SW, Gericke A, Mann EK, Kumar S (2009) Structure of ceramide-1-phosphate at the air–water solution interface in the absence and presence of Ca2+. Biophys J 96:2204–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. SkolováB JB, Zbytovská J, Gooris G, Bouwstra J, Slepička P, Berka P, Roh J, Palát K, Hrabálek A, Vávrová K (2013) Ceramides in the skin lipid membranes: length matters. Langmuir 29:15624–15633

    Article  CAS  Google Scholar 

  24. Metcalf R, Pandit SA (2012) Mixing properties of sphingomyelin ceramide bilayers: a simulation study. J Phys Chem B 116:4500–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slotte JP (2013) Molecular properties of various structurally defined sphingomyelins-correlation of structure with function. Prog Lipid Res 52:206–219

    Article  CAS  Google Scholar 

  26. Mendelsohn R, Selevany I, Moore DJ, Correa MCM, Mao G, Walters RM, Flach CR (2014) Kinetic evidence suggests spinodal phase separation in stratum corneum models by IR spectroscopy. J Phys Chem B 118:4378–4387

    Article  CAS  PubMed  Google Scholar 

  27. Das C, Olmsted PD (2016) The physics of stratum corneum lipid membranes. Philos T R Soc A 374

  28. Mojumdar EH, Gooris GS, Groen D, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA (2016) Stratum corneum lipid matrix: location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. BBA-Biomembranes 1858:1926–1934

    Article  CAS  PubMed  Google Scholar 

  29. Su PF, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  CAS  PubMed  Google Scholar 

  30. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, New York

    Google Scholar 

  31. Reed AE, Curtis LA, Weinhold FA (1988) Intermolecular interactions from a natural bond, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  32. Scheiner S, Kar T (2002) Red-versus blue-shifting hydrogen bonds: are there fundamental distinctions? J Phys Chem A 106:1784–1789

    Article  CAS  Google Scholar 

  33. Richard RM, Ball DW (2006) G2, G3, and complete basis set calculations of the thermodynamic properties of boron-containing rings: cyclo-CH2BHNH, 1,2, and 1,3-cyclo-C2H4BHNH. J Mol Struct (THEOCHEM) 776:89–96

    Article  CAS  Google Scholar 

  34. Richard RM, Ball DW (2007) Optimized geometries, vibrational frequencies, and thermochemical properties of mixed boron- and nitrogen-containing three-membered rings. J Mol Struct (THEOCHEM) 806:113–120

    Article  CAS  Google Scholar 

  35. Macias AT, Norton JE, Evanseck JD (2003) Impact of multiple cation-π interactions upon calix[4] arene substrate binding and specificity. J Am Chem Soc 125:2351–2360

    Article  CAS  PubMed  Google Scholar 

  36. Suwattanamala A, Magalhaes AL, Gomes JANF (2005) Computational study of calix[4] arene derivatives and complexation with Zn2+. Chem Phys 310:109–122

    Article  CAS  Google Scholar 

  37. Ruan C, Yang Z, Hallowita N, Rodgers MT (2005) Cation-π interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes. J Phys Chem A 109:11539–11550

    Article  CAS  PubMed  Google Scholar 

  38. Amunugama R, Rodgers MT (2002) The influence of substituents on cation-π interactions 4 absolute binding energies of alkali metal cation-phenol complexes determined by threshold collision-induced dissociation and theoretical studies. J Phys Chem A 106:9718–9728

    Article  CAS  Google Scholar 

  39. Duijineveldt FB, Duijineveldt-van de Rijdt JCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  40. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the difference of separate total energies some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GA, Schlegel HB, Scuseria GE, Robb MA, Cheseman JR, Montgomery Jr JA, Vreeven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, HadaM, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochtersky JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi L,Martin RL, Fox DJ, Keith T, Al-LahamMA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.03. Gaussian Inc, Pittsburgh, PA

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  43. Holas T, Vávrová K, KlimentováJ HA (2006) Synthesis and transdermal permeation-enhancing activity of ketone, amide, and alkane analogs of Transkarbam12. Bioorg Med Chem 14:2896–2903

    Article  CAS  PubMed  Google Scholar 

  44. Cornwell PA, Barry BW (1993) The routes of penetration of ions and 5-fluorouracil across human skin and the mechanisms of action of terpene skin penetration enhancers. Int J Pharm 94:189–194

    Article  CAS  Google Scholar 

  45. Williams AC, Barry BW (1989) Urea analogues in propylene glycol as penetration enhancers in human skin. Int J Pharm 56:43–50

    Article  CAS  Google Scholar 

  46. Lu YL, Xiao HM, Gong XD, Ju XH (2006) Density functional theory study on intermolecular interactions of 1H-ANTA dimer. Acta Chim Sin 64:1954–1960

    CAS  Google Scholar 

  47. Tian QP, Wang YH, Shi WJ, Tang HF (2013) A theoretical investigation into the cooperativity effect between the H∙∙∙ O and H∙∙∙ F interactions and electrostatic potential upon 1: 2 (F: N-(hydroxymethyl) acetamide) ternary-system formation. J Mol Model 19:5171–5185

    Article  CAS  PubMed  Google Scholar 

  48. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  49. Feng GR, Qi TY, Shi WJ, Guo YX, Zhang YJ, Guo J, Kang LX (2014) A B3LYP and MP2 (full) theoretical investigation on the cooperativity effect between hydrogen-bonding and cation-molecule interactions and thermodynamic property in the 1: 2 (Na+: N-(hydroxymethyl) acetamide) ternary complex. J Mol Model 20:2154

    Article  CAS  PubMed  Google Scholar 

  50. Yang ZM, Zhang L, Chen LZ, Ren FDDS, Wang Y (2011) A (U)MP2(full) and (U)CCSD(T) theoretical investigation into the substituent effects on the cation-π interactions between M+ (M = li or Na) and LBBL (L = -H, -CH3, -OH, -CN, -NC, -F, :CO, :NN, :BH, :CN, :NC and :OH). Comput Theor Chem 978:110–122

    Article  CAS  Google Scholar 

  51. Chen LZ, Zhang L, Ren FD, Cao DL, Ren J (2013) Theoretical studies on intermolecular hydrogen-bond interactions between hexamethylenetetramine and nitric acid. Chinese J Struct Chem 30:897–905

    Google Scholar 

  52. Bader RFW (1990) Atoms in molecules. Wiley, New York

    Google Scholar 

  53. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum a direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  54. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  55. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  56. Liu YZ, Shi XN, Tang HA, Liu XW, Yuan K, Zhang JY, Zhang J (2010) Co-existing Lithium bonding and hydrogen bonding interactions between CH3SH and CH3Sli. Acta Chim Sin 68:493–500

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for carefully reading our manuscript and providing many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-ping Tian.

Electronic supplementary material

ESM 1

(DOC 51 kb)

Supplementary data

Supplementary data

Cartesian coordinates of eight N-(hydroxymethyl)acetamide dimers at the B3LYP/6–311++G** level are in Appendix A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Hf., Zhong, H., Zhang, Ll. et al. Theoretical investigations into the intermolecular hydrogen-bonding interactions of N-(hydroxymethyl)acetamide dimers. J Mol Model 24, 139 (2018). https://doi.org/10.1007/s00894-018-3672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3672-1

Keywords

Navigation