Skip to main content
Log in

A computational investigation on the antioxidant potential of myricetin 3,4′-di-O-α-L-rhamnopyranoside

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we present a computational study on the antioxidant potential of myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Global Health Observatory Data (2017) World Health Association Available at http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/. Accessed 19 Nov 2017

  2. Kaplan H, Hill K, Lancaster J, Hurtado AM (2000) A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthropol 9:156–185

    Article  Google Scholar 

  3. Glaser R, Kiecolt-Glaser J (2005) How stress damages immune system and health. Discov Med 5:165–169

    PubMed  Google Scholar 

  4. Moskalev A et al. (2017) A review of the biomedical innovations for healthy longevity. Aging 9:7–25

    Article  CAS  PubMed Central  Google Scholar 

  5. Gladyshev VN (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Podolskiy DI, Gladyshev VN (2016) Intrinsic versus extrinsic cancer risk factors and aging. Trends Mol Med 22:833–834

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee BC, Kaya A, Gladyshev VN (2016) Methionine restriction and life-span control. Ann N Y Acad Sci 1363:116–124

    Article  CAS  PubMed  Google Scholar 

  8. Cox AG et al. (2016) Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci U S A 113:E5562–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuso PJ, Ismail MH, Ha BP, Bartolloto C (2013) Nutritional update for physicians: plant-based diets. Perm J 17:61–66

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  11. Guajardo-Flores D, Serna-Saldivar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans Phaseolus vulgaris L. Food Chem 141:1497–1503

    Article  CAS  PubMed  Google Scholar 

  12. Plaza M, Kariuki J, Turner C (2014) Quantification of individual phenolic compounds contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem 62:409–418

    Article  CAS  PubMed  Google Scholar 

  13. Zhang XC, Chen F, Wang MF (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62:1643–1648

    Article  CAS  PubMed  Google Scholar 

  14. Aswathy VV, Alper-Hayta S, Yalcin G, Mary YS, Panicker CY, Jojo PJ, Kaynak-Onurdag F, Armaković S, Armaković S J, Yildiz I, Alsenoy CV (2017) Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures. J Mol Struct 1141:495–511

    Article  CAS  Google Scholar 

  15. Belščak-Cvitanović A, Durgo K, Bušić A, Franekić J, Komes D (2014) Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (HEp2) cells. J Med Food 17:206–217

    Article  CAS  PubMed  Google Scholar 

  16. Malig TC, Ashkin MR, Burman AL, Barday M, Heyne BJ, Back TG (2017) Comparison of free-radical inhibiting antioxidant properties of carvedilol and its phenolic metabolites. Med Chem Comm 8:606–615

    Article  CAS  Google Scholar 

  17. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  18. Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:92–96

    Article  CAS  Google Scholar 

  19. Praveena R, Sadasivam K, Kumaresan R, Deepha V, Sivakumar R (2013) Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta A 103:442–452

    Article  CAS  Google Scholar 

  20. D’Archivio M, Filesi C, Vari R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braca A, Tommasi N, Mendez J, Morelli I, Pizza C (1999) Three flavonoids from Licania heteromorpha. Phytochemistry 51:1121–1124

    Article  CAS  Google Scholar 

  22. Yao Y, Lim G, Xie Y, Ma P, Li G, Meng Q, Wu T (2014) Preformulation studies of myricetin: a natural antioxidant flavonoid. Pharmazie 69:19–26

    CAS  PubMed  Google Scholar 

  23. Gordon MH, Roedig-Penman A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97: 79–85

    Article  CAS  PubMed  Google Scholar 

  24. Chobot V, Hadacek F (2011) Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep 16:242–247

    Article  CAS  PubMed  Google Scholar 

  25. Sadasivam K, Kumaresan R (2011) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds—a DFT study. Spectrochim Acta A 79:282–293

    Article  CAS  Google Scholar 

  26. Li M. -J., Liu L, Fu Y, Guo Q. -X. (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J Mol Struct THEOCHEM 815:1–9

    Article  CAS  Google Scholar 

  27. Giacomelli C, Miranda F. d. a. S., Goncalves NS, Spinelli A (2004) Antioxidant activity of phenolic and related compounds: a density functional theory study on the O-H bond dissociation enthalpy. Redox Rep 9:263–269

    Article  CAS  PubMed  Google Scholar 

  28. Galato D, Giacomelli C, Ckless K, Susin MF, Vale RMR, Spinelli A (2001) Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep 6:243–250

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Xiao H, Zheng J, Liang G (2015) Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS One 10:e0121276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: h-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  31. Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  32. Apak R, Ozyurek M, Guclu K, Capanoglu E (2016) Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J Agric Food Chem 64:1028–1045

    Article  CAS  PubMed  Google Scholar 

  33. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  36. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  37. Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109

    Article  CAS  PubMed  Google Scholar 

  38. Rassolov V, Pople JA, Ratner M, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976– 984

    Article  CAS  Google Scholar 

  39. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–946

    Article  CAS  Google Scholar 

  40. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  41. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  42. La Rocca MV, Rutkowski M, Ringeissen S, Gomar J, Frantz M. -C., Ngom S, Adamo C (2016) Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. J Mol Model 22:250–260

    Article  CAS  PubMed  Google Scholar 

  43. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  CAS  PubMed  Google Scholar 

  44. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  45. Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox. DJ (2009) Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01

  47. Wright JS, Carpenter DJ, McKay DJ, Ingold KU (1997) Theoretical calculation of substituent effects on the O-H bond strength of phenolic antioxidants related to vitamin. E J Am Chem Soc 119:4245–4252

    Article  CAS  Google Scholar 

  48. de Souza GLC, de Oliveira LMF, Vicari RG, Brown A (2016) A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(13) linkage flavonols. J Mol Model 22:100–109

    Article  CAS  PubMed  Google Scholar 

  49. Mohajeri A, Asemani SS (2009) Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J Mol Struct 930:15–20

    Article  CAS  Google Scholar 

  50. Pérez-González A, Rebollar-Zepeda AM, Léon-Carmona J R, Galano A (2012) Reactivity indexes and O–H bond dissociation energies of a large series of polyphenols: implications for their free radical scavenging activity. J Mex Chem Soc 56:241–249

    Google Scholar 

  51. Vagánek A, Rimarčik J, Lukeš V, Klein E (2012) On the energetics of homolytic and heterolytic O–H bond cleavage in flavonols. Comput Theor Chem 991:192–200

    Article  CAS  Google Scholar 

  52. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J -L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97:679–688

    Article  CAS  Google Scholar 

  53. Amić D, Stepanić W, Lučić R, Marković Z, Dmitrić Marković JM (2013) PM6 study of free radical scavenging mechanisms of flavonoids: why does OH bond dissociation enthalpy effectively represent free radical scavenging activity. J Mol Model 19:2593–2603

    Article  CAS  PubMed  Google Scholar 

  54. Justino GC, Vieira AJSC (2010) Antioxidant mechanisms of quercetin and myrcetin in the gas phase and in solution—a comparison and validation of semi-empirical methods. J Mol Model 16:863–876

    Article  CAS  PubMed  Google Scholar 

  55. Mendes RA, e Silva BLS, Takeara R, Freitas RG, Brown A, de Souza GLC (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Brazilian agency CNPq funded this work (Process number: 306266/2016-4). AB thanks the Natural Sciences and Engineering Research Council of Canada for funding (NSERC - Discovery Grant). This research was supported in part by PL-Grid Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. C. de Souza.

Additional information

Supplementary Material

Cartesian coordinates for the optimized geometries determined using the B3LYP and LC-ω PBE functionals with the 6-311G(d,p) and the 6-311+G(d,p) basis set in the gas phase, water, methanol, ethanol, and n-hexane can be found in the Supplementary Material.

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Cartesian coordinates for the optimized geometries determined using the B3LYP and LC-ω PBE functionals with the 6-311G(d,p) and the 6-311+G(d,p) basis set in the gas phase, water, methanol, ethanol, and n-hexane can be found in the Supplementary Material.

(PDF 160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, R.A., Almeida, S.K.C., Soares, I.N. et al. A computational investigation on the antioxidant potential of myricetin 3,4′-di-O-α-L-rhamnopyranoside. J Mol Model 24, 133 (2018). https://doi.org/10.1007/s00894-018-3663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3663-2

Keywords

Navigation