Skip to main content

Advertisement

Log in

Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song Y, Feng W, Li N, Li Y, Zhi K, Teng Y, He R, Zhou H, Liu Q (2016) Effects of demineralization on the structure and combustion properties of Shengli lignite. Fuel 183:659–667

    Article  CAS  Google Scholar 

  2. Yang F, Hou Y, Wu W, Niu M (2017) A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids. Fuel 189:408–418

    Article  CAS  Google Scholar 

  3. Feng X, Zhang C, Tan P, Zhang X, Fang Q, Chen G (2016) Experimental study of the physicochemical structure and moisture readsorption characteristics of Zhaotong lignite after hydrothermal and thermal upgrading. Fuel 185:112–121

    Article  CAS  Google Scholar 

  4. Schafer HNS (1984) Determination of carboxyl groups in low-rank coals. Fuel 63:723–726

    Article  CAS  Google Scholar 

  5. Liu X, Liu S, Fan M, Zhang L (2017) Decrease of hydrophilicity of lignite using CTAB: effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel 197:474–481

    Article  CAS  Google Scholar 

  6. Feng L, Zhao G, Zhao Y, Zhao M, Tang J (2017) Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel 203:924–931

    Article  CAS  Google Scholar 

  7. Zhao H, Li Y, Song Q, Wang X, Shu X (2017) Drying, re-adsorption characteristics, and combustion kinetics of Xilingol lignite in different atmospheres. Fuel 210:592–604

    Article  CAS  Google Scholar 

  8. Ye C, Huang H, Li X, Li W, Feng J (2017) The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes. Fuel 207:85–92

    Article  CAS  Google Scholar 

  9. Feng L, Liu X, Song L, Wang X, Zhang Y, Cui T, Tang H (2013) The effect of alkali treatment on some physico–chemical properties of Xilinhaote lignite. Powder Technol 247:19–23

    Article  CAS  Google Scholar 

  10. Feng L, Tang J, Ma Z, Wan Y (2016) Effect of mechanical thermal expression drying technology on lignite structure. Dry Technol 35(3):356–362

    Article  CAS  Google Scholar 

  11. Yu J, Tahmasebi A, Han Y, Yin F, Li X (2013) A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol 106:9–20

    Article  CAS  Google Scholar 

  12. Yu Y, Liu J, Wang R, Zhou J, Cen K (2012) Effect of hydrothermal dewatering on the slurryability of brown coals. Energy Convers Manag 57:8–12

    Article  CAS  Google Scholar 

  13. Kelemen SR, Kwiatek PJ (1995) Quantification of organic oxygen species on thesurface of fresh and reacted Argonne premium coal. Energy Fuel 9:841–848

    Article  CAS  Google Scholar 

  14. Man C, Liu Y, Zhu X, Che D (2014) Moisture readsorption performance of air-dried and hydrothermally dewatered lignite. Energy Fuel 28:5023–5030

    Article  CAS  Google Scholar 

  15. Geng W, Nakajima T, Takanashi H, Ohki A (2009) Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88:139–144

    Article  CAS  Google Scholar 

  16. Tahmasebi A, Yu J, Han Y, Yin F (2012) Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy Fuel 26:3651–3660

    Article  CAS  Google Scholar 

  17. Norinaga K, Kumagai H, Hayashi J, Chiba T (1998) Classification of water sorbed in coal on the basis of congelation characteristics. Energy Fuel 12:574–579

  18. Wang Y, Wei X, Xie R, Liu F, Li P, Zong Z (2015) Structural characterization of typical organic species in Jincheng no. 15 anthracite. Energy Fuel 29:595–601

    Article  CAS  Google Scholar 

  19. Wang Y, Zhou J, Bai L, Chen Y, Zhang S, Lin X (2014) Impacts of inherent O-containing functional groups on the surface properties of Shengli lignite. Energy Fuel 28:862–867

    Article  CAS  Google Scholar 

  20. Zhang Y, Jing X, Jing K, Chang L, Bao W (2015) Study on the pore structure and oxygen-containing functional groupsdevoting to the hydrophilic force of dewatered lignite. Appl Surf Sci 324:90–98

    Article  CAS  Google Scholar 

  21. Borini S, White R, Wei D (2013) Ultrafast graphene oxide humidity sensors. Nano 12:11166–11173

    Google Scholar 

  22. Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D (2016) Facile preparation of graphene oxide membranes for gas separation. Chem Mater 28:2921–2927

    Article  CAS  Google Scholar 

  23. Nethravathi C, Rajamathi C, Rajamathi M, Wang X (2014) Cobalt hydroxide/oxide hexagonal Ring_graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications. Nano 3:2755–2765

    Google Scholar 

  24. Frost R, Jönsson G, Chakarov D, Svedhem S, Kasemo B (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362

    Article  CAS  PubMed  Google Scholar 

  25. Wałęsa R, Broda M (2017) The influence of solvent on conformational properties of peptides with Aib residue—a DFT study. J Mol Model 23:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arokiyanathan A, Lakshmipathi S (2017) Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation. J Mol Model 23:345

    Article  CAS  PubMed  Google Scholar 

  27. Salazar-Villanueva M, Hernandez AB (2017) Adsorption of CO and NO molecules onto pentagonal clusters of aluminum: a DFT study. J Mol Model 23:332

    Article  CAS  PubMed  Google Scholar 

  28. Bourouina A, Rekhis M (2017) Structural and electronic study of iron-based dye sensitizers for solar cells using DFT/TDDFT. J Mol Model 23:310 /1-9

    Article  CAS  PubMed  Google Scholar 

  29. Najafi H, Changizi-Ashtiyani S (2017) Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation. J Mol Model 23:326

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Wei W, Li L (2017) Catalytic coupling reaction mechanism of 4-nitrobenzenethiol on silver clusters: a density functional theoretical study. J Mol Model 23:321

    Article  CAS  PubMed  Google Scholar 

  31. Roohi H, Ghauri K (2016) Influence of various anions and cations on electrochemical andphysicochemical properties of the nanostructured tunable aryl alkylionic liquids (TAAILs): a DFT M06-2X study. Thermochim Acta 639:20–40

    Article  CAS  Google Scholar 

  32. Liu J, Wu J, Zhu J, Wang Z, Zhou J, Cen K (2016) Removal of oxygen functional groups in lignite by hydrothermal dewatering: an experimental and DFT study. Fuel 178:85–92

    Article  CAS  Google Scholar 

  33. Wu J, Wang J, Liu J, Yang Y, Cheng J, Wang Z, Zhou J, Cen K (2017) Moisture removal mechanism of low-rank coal by hydrothermal dewatering: physicochemical property analysis and DFT calculation. Fuel 187:242–249

    Article  CAS  Google Scholar 

  34. Allardice DJ, Clemow LM, Favas G (2003) The characterisation of different forms of water in low rank coals and some hydrothermally dried products. Fuel 82(6):661–667

    Article  CAS  Google Scholar 

  35. Yu J, Tahmasebi A (2013) A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol 106:9–20

    Article  CAS  Google Scholar 

  36. Wang G, Yang J, Park J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C112(22):8192–8195

    Google Scholar 

  37. Liu J, Feng L, Wang X, Zhao M (2017) Exploring the effect of confinement on water clusters in carbon nanotubes. J Mol Model 23:133

    Article  CAS  PubMed  Google Scholar 

  38. Lima I, Sousa L (2017) A DFT study of a set of natural dyes for organic electronics. J Mol Model 23:343

    Article  PubMed  Google Scholar 

  39. Brahim H, Haddad B (2017) DFT/TDDFT computational study of the structural, electronic and optical properties of rhodium (III) and iridium (III) complexes based on tris-picolinate bidentate ligands. J Mol Model 23:344

    Article  CAS  PubMed  Google Scholar 

  40. Ha N, Cuong N (2017) Electronic properties of the polypyrrole-dopant anions ClO4 and MoO4 2−: a density functional theory study. J Mol Model 23:336

    Article  CAS  PubMed  Google Scholar 

  41. Michaux C, Wouters J, Perpète EA (2008) Microhydration of protonated glycine: an ab initio family tree. J Phys Chem B 112(8):2430–2438

    Article  CAS  PubMed  Google Scholar 

  42. Bagri A, Mattevi C, Acik M (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  CAS  PubMed  Google Scholar 

  43. Charriere D, Behra P (2010) Water sorption on coals. J Colloid Interface Sci 344(2):460–467

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z (2011) Structure and dynamics in brown coal matrix during moisture removal process by molecular dynamics simulation. Mol Phys 109(3):447–455

    Article  CAS  Google Scholar 

  45. D'Arcy R, Watt I (1970) Analysis of sorption isotherms of non-homogeneous sorbents. Trans Faraday Soc 66(569):1236–1245

    Article  CAS  Google Scholar 

  46. Mc C, Bandosz T (1999) A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment. Langmuir 15(2):533–544

    Article  Google Scholar 

  47. Domazetis G, James B (2006) Molecular models of brown coal containing inorganic species. Org Geochem 37(2):244–259

    Article  CAS  Google Scholar 

  48. Do D, Junpirom S, Do H (2009) A new adsorption-desorption model for water adsorption inactivated carbon. Carbon 47(6):1466–1473

    Article  CAS  Google Scholar 

  49. Fei Y, Zhang C (2007) The effect of cationcontent of some raw and ion-exchanged Victorian lignites on their equilibrium moisture content and surface area. Fuel 86(17–18):2890–2897

    Article  CAS  Google Scholar 

  50. Norinaga K, Kumagai H (1998) Classification of water sorbed in coal on the basis of congelation characteristics. Energy Fuel 12(3):574–579

    Article  CAS  Google Scholar 

  51. Wang X, Feng L (2013) Theoretical study of substituent effects on bond dissociation enthalpies in lignite model compounds. Acta Chim Sin 71(07):10471052

    Google Scholar 

  52. Xiang J, Zeng F (2011) Model construction ofthe macromolecular structure of Yanzhou coal and its molecular simulation. J Fuel Chem Technol 39(7):481–488

    Article  CAS  Google Scholar 

  53. Gotch A, Zwier T (1992) Multiphoton ionization studies of clusters of immiscible liquids. I. C6H6–(H2O)n, n=1,2. J Chem Phys 96(5):3388–3401

    Article  CAS  Google Scholar 

  54. Pérez J, Hadad C, Restrepo A (2008) Structural studies of the water tetramer. Int J Quantum Chem 108(10):1653–1659

    Article  CAS  Google Scholar 

  55. Xu S, Irle S, Musaev DG (2005) Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants. J Phys Chem A 109(42):9563–9572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Natural Science Foundation of China (Grant No. 51574237, 51274197), the National Basic Research Program of China (973 program, Grant No.2012CB214901) and the 111 Project (B12030) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, X., Cao, Y. et al. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite. J Mol Model 24, 130 (2018). https://doi.org/10.1007/s00894-018-3653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3653-4

Keywords

Navigation