Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon


Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C6(CH3)62+, in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C7H7)3+, in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C8H8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage.

Possible structural transformations of stable configurations of (C7H7)3+, which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Olah GA (1995) Angew Chem Int Ed 34:1393–1405

    CAS  Article  Google Scholar 

  2. 2.

    Olah GA, Prakash G, Wade K, Molnár Á, Williams RE (2011) Hypercarbon chemistry, 2nd edn. Wiley, Hoboken, p 85–147

  3. 3.

    Du J, Sun X, Jiang G, Zhang C (2016) Int J Hydrog Energy 41:11301–11307

    CAS  Article  Google Scholar 

  4. 4.

    Gao Y, Shao N, Zhou RL, Zhang GL, Zeng XC (2012) J Phys Chem Lett 3:2264–2268

    CAS  Article  Google Scholar 

  5. 5.

    Hogeveen H, Kwant PW (1975) Acc Chem Res 8:413–420

    CAS  Article  Google Scholar 

  6. 6.

    Surya Prakash G, Rasul G, Olah GA, Phys J (1998) J Phys Chem A 102:2579–2583

    Article  Google Scholar 

  7. 7.

    Olah GA, Rasul G (1997) Acc Chem Res 30:245–250

    CAS  Article  Google Scholar 

  8. 8.

    Boo DW, Lee YT (1995) J Chem Phys 103:520–530

    CAS  Article  Google Scholar 

  9. 9.

    Williams RE (1971) Inorg Chem 10:210–214

    CAS  Article  Google Scholar 

  10. 10.

    Stohrer WD, Hoffmann R (1972) J Am Chem Soc 94:1661–1668

    CAS  Article  Google Scholar 

  11. 11.

    Masamune S, Sakai M, Ona H, Jones AJ (1972) J Am Chem Soc 94:8956–8958

    CAS  Article  Google Scholar 

  12. 12.

    Kemp-Jones AV, Nakamura N, Masamune S (1974) J Chem Soc Chem Commun 109–110

  13. 13.

    Masamune S, Sakai M, Kemp-Jones A, Ona H, Venot A, Nakashima T (1973) Angew Chem Int Ed 12:769–771

    Article  Google Scholar 

  14. 14.

    Coates R, Fretz E (1977) Tetrahedron Lett 18:1955–1960

    Article  Google Scholar 

  15. 15.

    Hogeveen H, Kwant PW (1974) J Am Chem Soc 96:2208–2214

    CAS  Article  Google Scholar 

  16. 16.

    Hogeveen H, Kwant PW (1973) Tetrahedron Lett 14:1665–1670

    Article  Google Scholar 

  17. 17.

    Jašík J, Gerlich D, Roithová J (2014) J Am Chem Soc 136:2960–2962

    Article  Google Scholar 

  18. 18.

    Lammertsma K, Barzaghi M, Olah GA, Pople JA, Schleyer P, Simonetta M (1983) J Am Chem Soc 105:5258–5263

    CAS  Article  Google Scholar 

  19. 19.

    Lammertsma K, Olah GA, Barzaghi M, Simonetta M (1982) J Am Chem Soc 104:6851–6852

    CAS  Article  Google Scholar 

  20. 20.

    Jursic BS (1999) J Chem Res Synop :502–503

  21. 21.

    Malischewski M, Seppelt K (2017) Angew Chem Int Ed 56:368–370

    CAS  Article  Google Scholar 

  22. 22.

    Malischewski M, Seppelt K (2017) Angew Chem Int Ed 56:16495–16497

    CAS  Article  Google Scholar 

  23. 23.

    Rasul G, Prakash GS, Olah GA (2010) J Phys Chem A 114:12124–12127

    CAS  Article  Google Scholar 

  24. 24.

    Olah GA, Rasul G (1996) J Am Chem Soc 118:8503–8504

    CAS  Article  Google Scholar 

  25. 25.

    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    CAS  Article  Google Scholar 

  26. 26.

    Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos J (1992) Rev Mod Phys 64:1045

    CAS  Article  Google Scholar 

  27. 27.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  Article  Google Scholar 

  28. 28.

    Blochl PE (1994) Phys Rev B 50:17953–17979

    CAS  Article  Google Scholar 

  29. 29.

    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    CAS  Article  Google Scholar 

  30. 30.

    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    CAS  Article  Google Scholar 

  31. 31.

    Bader RFW (1990) Atoms in molecules - a quantum theory. Clarendon, Oxford

    Google Scholar 

  32. 32.

    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  33. 33.

    Von W, Doering E, Knox L (1957) J Am Chem Soc 79:352–356

    Article  Google Scholar 

  34. 34.

    Klein JEMN, Havenith RWA, Knizia G (2018) Chem Eur J. https://doi.org/10.1002/chem.201705812

  35. 35.

    Hückel E (1931) Z Phys 70:204–286

    Article  Google Scholar 

  36. 36.

    Roberts JD, Streitwieser Jr A, Regan CM (1952) J Am Chem Soc 74:4579–4582

    CAS  Article  Google Scholar 

  37. 37.

    Jemmis ED, Schleyer P v R (1982) J Am Chem Soc 104:4781–4788

    CAS  Article  Google Scholar 

  38. 38.

    McKee WC, Agarwal J, Schaefer HF, Schleyer P v R (2014) Angew Chem Int Ed 53:7875–7878

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Michael Lee from the Oklahoma School of Science and Mathematics (now at the University of Oklahoma) for valuable discussions at the early stage of this work. The calculations have been performed using computational resources at the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Bin Wang.

Electronic supplementary material


(DOCX 1941 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Rahman, A.K.F. & Wang, B. Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon. J Mol Model 24, 116 (2018). https://doi.org/10.1007/s00894-018-3640-9

Download citation


  • Heptacoordinate hypercarbon
  • Density functional theory
  • Ionic hydrocarbon compounds
  • Tropylium trication
  • Ab initio electronic structure calculations