Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon

  • George Wang
  • A. K. Fazlur Rahman
  • Bin Wang
Original Paper


Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C6(CH3)62+, in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C7H7)3+, in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C8H8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage.

Graphical abstract

Possible structural transformations of stable configurations of (C7H7)3+, which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.


Heptacoordinate hypercarbon Density functional theory Ionic hydrocarbon compounds Tropylium trication Ab initio electronic structure calculations 



The authors would like to thank Michael Lee from the Oklahoma School of Science and Mathematics (now at the University of Oklahoma) for valuable discussions at the early stage of this work. The calculations have been performed using computational resources at the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

894_2018_3640_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1941 kb)


  1. 1.
    Olah GA (1995) Angew Chem Int Ed 34:1393–1405CrossRefGoogle Scholar
  2. 2.
    Olah GA, Prakash G, Wade K, Molnár Á, Williams RE (2011) Hypercarbon chemistry, 2nd edn. Wiley, Hoboken, p 85–147Google Scholar
  3. 3.
    Du J, Sun X, Jiang G, Zhang C (2016) Int J Hydrog Energy 41:11301–11307CrossRefGoogle Scholar
  4. 4.
    Gao Y, Shao N, Zhou RL, Zhang GL, Zeng XC (2012) J Phys Chem Lett 3:2264–2268CrossRefGoogle Scholar
  5. 5.
    Hogeveen H, Kwant PW (1975) Acc Chem Res 8:413–420CrossRefGoogle Scholar
  6. 6.
    Surya Prakash G, Rasul G, Olah GA, Phys J (1998) J Phys Chem A 102:2579–2583CrossRefGoogle Scholar
  7. 7.
    Olah GA, Rasul G (1997) Acc Chem Res 30:245–250CrossRefGoogle Scholar
  8. 8.
    Boo DW, Lee YT (1995) J Chem Phys 103:520–530CrossRefGoogle Scholar
  9. 9.
    Williams RE (1971) Inorg Chem 10:210–214CrossRefGoogle Scholar
  10. 10.
    Stohrer WD, Hoffmann R (1972) J Am Chem Soc 94:1661–1668CrossRefGoogle Scholar
  11. 11.
    Masamune S, Sakai M, Ona H, Jones AJ (1972) J Am Chem Soc 94:8956–8958CrossRefGoogle Scholar
  12. 12.
    Kemp-Jones AV, Nakamura N, Masamune S (1974) J Chem Soc Chem Commun 109–110Google Scholar
  13. 13.
    Masamune S, Sakai M, Kemp-Jones A, Ona H, Venot A, Nakashima T (1973) Angew Chem Int Ed 12:769–771CrossRefGoogle Scholar
  14. 14.
    Coates R, Fretz E (1977) Tetrahedron Lett 18:1955–1960CrossRefGoogle Scholar
  15. 15.
    Hogeveen H, Kwant PW (1974) J Am Chem Soc 96:2208–2214CrossRefGoogle Scholar
  16. 16.
    Hogeveen H, Kwant PW (1973) Tetrahedron Lett 14:1665–1670CrossRefGoogle Scholar
  17. 17.
    Jašík J, Gerlich D, Roithová J (2014) J Am Chem Soc 136:2960–2962CrossRefGoogle Scholar
  18. 18.
    Lammertsma K, Barzaghi M, Olah GA, Pople JA, Schleyer P, Simonetta M (1983) J Am Chem Soc 105:5258–5263CrossRefGoogle Scholar
  19. 19.
    Lammertsma K, Olah GA, Barzaghi M, Simonetta M (1982) J Am Chem Soc 104:6851–6852CrossRefGoogle Scholar
  20. 20.
    Jursic BS (1999) J Chem Res Synop :502–503Google Scholar
  21. 21.
    Malischewski M, Seppelt K (2017) Angew Chem Int Ed 56:368–370CrossRefGoogle Scholar
  22. 22.
    Malischewski M, Seppelt K (2017) Angew Chem Int Ed 56:16495–16497CrossRefGoogle Scholar
  23. 23.
    Rasul G, Prakash GS, Olah GA (2010) J Phys Chem A 114:12124–12127CrossRefGoogle Scholar
  24. 24.
    Olah GA, Rasul G (1996) J Am Chem Soc 118:8503–8504CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  26. 26.
    Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos J (1992) Rev Mod Phys 64:1045CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  28. 28.
    Blochl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  29. 29.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  30. 30.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  31. 31.
    Bader RFW (1990) Atoms in molecules - a quantum theory. Clarendon, OxfordGoogle Scholar
  32. 32.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  33. 33.
    Von W, Doering E, Knox L (1957) J Am Chem Soc 79:352–356CrossRefGoogle Scholar
  34. 34.
    Klein JEMN, Havenith RWA, Knizia G (2018) Chem Eur J.
  35. 35.
    Hückel E (1931) Z Phys 70:204–286CrossRefGoogle Scholar
  36. 36.
    Roberts JD, Streitwieser Jr A, Regan CM (1952) J Am Chem Soc 74:4579–4582CrossRefGoogle Scholar
  37. 37.
    Jemmis ED, Schleyer P v R (1982) J Am Chem Soc 104:4781–4788CrossRefGoogle Scholar
  38. 38.
    McKee WC, Agarwal J, Schaefer HF, Schleyer P v R (2014) Angew Chem Int Ed 53:7875–7878CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Oklahoma School of Science and MathematicsOklahoma CityUSA
  2. 2.School of Chemical, Biological and Materials Engineering and Center for Interfacial Reaction EngineeringUniversity of OklahomaNormanUSA

Personalised recommendations