Probing the antioxidant potential of phloretin and phlorizin through a computational investigation

  • Rodrigo A. Mendes
  • Bruno L. S. e Silva
  • Renata Takeara
  • Renato G. Freitas
  • Alex Brown
  • Gabriel L. C. de Souza
Original Paper


The structures and energetics of two dihydrochalcones (phloretin and its glycoside phlorizin) were examined with density functional theory, using the B3LYP, M06-2X, and LC-ω PBE functionals with both the 6-311G(d,p) and 6-311 + G(d,p) basis sets. Properties connected to antioxidant activity, i.e., bond dissociation enthalpies (BDEs) for OH groups and ionization potentials (IPs), were computed in a variety of environments including the gas-phase, n-hexane, ethanol, methanol, and water. The smallest BDEs among the four OH groups for phloretin (three for phlorizin) were determined (using B3LYP/6-311 + G(d,p) in water) to be 79.36 kcal/mol for phloretin and 79.98 kcal/mol for phlorizin while the IPs (at the same level of theory) were obtained as 139.48 and 138.98 kcal/mol, respectively. By comparing with known antioxidants, these values for the BDEs indicate both phloretin and phlorizin show promise for antioxidant activity. In addition, the presence of the sugar moiety has a moderate (0-6 kcal/mol depending on functional) effect on the BDEs for all OH groups. Interestingly, the BDEs suggest that (depending on the functional chosen) the sugar moiety can lead to an increase, decrease, or no change in the antioxidant activity. Therefore, further experimental tests are encouraged to understand the substituent effect on the BDEs for phloretin and to help determine the most appropriate functional to probe BDEs for dihydrochalcones.


Dihydrochalcones Phloretin Phlorizin Bond dissociation energy (BDE) Ionization potential (IP) Density functional theory (DFT) Antioxidant activity 



GLCS thanks Dr. Mariana Pantoja, MD from the Universidade do Estado do Amazonas for useful discussions. This work was partially funded by the Brazilian agency CNPq (Process number: 306266/2016-4). AB thanks the Natural Sciences and Engineering Research Council of Canada for funding (NSERC - Discovery Grant).

Supplementary material

894_2018_3632_MOESM1_ESM.pdf (943 kb)
(PDF 942 KB)


  1. 1.
    Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A (2016) Synthesis and antioxidant activity of hydroxytyrosol Alkyl-Carbonate derivatives. J Nat Prod 79:1737–1745CrossRefGoogle Scholar
  2. 2.
    Wu G, Johnson SK, Bornman JF, Bennett SJ, Fang Z (2017) Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chem 214:199–207CrossRefGoogle Scholar
  3. 3.
    Murthy PK, Mary YS, Suneetha V, Panicker CY, Armaković S, Armaković SJ, Giri L, Suchetan PA, Alsenoy CV (2017) Towards the new heterocycle based molecule: synthesis, characterization and reactivity study. J Mol Struct 1137:589–605CrossRefGoogle Scholar
  4. 4.
    Varnali T (2016) A comparison of scytonemin and its carbon analogue in terms of antioxidant properties through free radical mechanisms and conformational analysis: a DFT investigation. J Mol Model 22:213CrossRefGoogle Scholar
  5. 5.
    Grajeda-Iglesias C, Figueroa-Espinoza MC, Barouh N, Baréa B, Fernandes A, de Freitas V, Salas E (2016) Isolation and characterization of anthocyanins from hibiscus sabdariffa flowers. J Nat Prod 79:1709–1718CrossRefGoogle Scholar
  6. 6.
    Okumura K, Hosoya T, Kawarazaki K, Izawa N, Kumazawa S (2016) Antioxidant activity of phenolic compounds from fava bean sprouts. J Food Sci 81:1394–1398CrossRefGoogle Scholar
  7. 7.
    Benzon KB, Sheena MY, Panicker CY, Armaković S, Armaković SJ, Pradhan K, Nanda AK, Alsenoy CV (2017) Studies on the synthesis, spectroscopic analysis, molecular docking and DFT calculations on 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazol 3-oxide. J Mol Struct 1130:644–658CrossRefGoogle Scholar
  8. 8.
    Ranjith PK, Mary YS, Panicker CY, Anto PL, Armaković S, Armaković SJ, Musiol R, Jampilek J, Alsenoy CJ (2017) New quinolone derivative: spectroscopic characterization and reactivity study by DFT and MD approaches. J Mol Struct 1135:1–14CrossRefGoogle Scholar
  9. 9.
    Apak R, Ozyurek M, Guclu K, Capanoglu E (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Afric Food Chem 64:997–1027CrossRefGoogle Scholar
  10. 10.
    Malig TC, Ashkin MR, Burman AL, Barday M, Heyne BJ, Back TG (2017) Comparison of free-radical inhibiting antioxidant properties of carvedilol and its phenolic metabolites. Med Chem Comm 8:606–615CrossRefGoogle Scholar
  11. 11.
    Rahman A-U (2016) Studies in natural products chemistry, vol 51. Elsevier, Oxford, pp 253–373Google Scholar
  12. 12.
    Aswathy VV, Alper-Hayta S, Yalcin G, Mary YS, Panicker CY, Jojo PJ, Kaynak-Onurdag F, Armaković S, Armaković SJ, Yildiz I, Alsenoy CV (2017) Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures. J Mol Struct 1141:495–511CrossRefGoogle Scholar
  13. 13.
    Plaza M, Kariuki J, Turner C (2014) Quantification of individual phenolic compounds’ contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem 62:409–418CrossRefGoogle Scholar
  14. 14.
    Zhang XC, Chen F, Wang MF (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62:1643–1648CrossRefGoogle Scholar
  15. 15.
    Belščak-Cvitanović A, Durgo K, Bušić A, Franekić J, Komes D (2014) Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (HEp2) cells. J Med Food 17:206–217CrossRefGoogle Scholar
  16. 16.
    Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T (2003) Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem 51:3309–3312CrossRefGoogle Scholar
  17. 17.
    Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  18. 18.
    Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of Apigenin, Luteolin, and Taxifolin antioxidants. a first principle theoretical study. J Phys Chem A 108:92–96CrossRefGoogle Scholar
  19. 19.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-Atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922CrossRefGoogle Scholar
  20. 20.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas-phase and in solvent. Theor Chem Acc 111:210–216CrossRefGoogle Scholar
  21. 21.
    Apak R, Ozyurek M, Guclu K, Capanoglu E (2016) Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid Peroxidation assays. J Agric Food Chem 64:1028–1045CrossRefGoogle Scholar
  22. 22.
    Nenadis N, Sigalas MP (2008) A DFT study on the radical scavenging activity of maritimetin and related aurones. J Phys Chem A 112:12196–12202CrossRefGoogle Scholar
  23. 23.
    Guajardo-Flores D, Serna-Saldivar SO, Gutiérrez-Uribe J A (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus Vulgaris L.) Food Chem 141:1497–1503CrossRefGoogle Scholar
  24. 24.
    Stepanić V, Troselj KG, Lucić B, Marković Z, Amić D (2013) Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 141:1562–1570CrossRefGoogle Scholar
  25. 25.
    Wright JS, Carpenter DJ, McKay DJ, Ingold KU (1997) Theoretical calculation of substituent effects on the O-H bond strength of phenolic antioxidants related to vitamin E. J Am Chem Soc 119:4245–4252CrossRefGoogle Scholar
  26. 26.
    Brinck T, Lee H -N, Jonsson M (1999) Quantum chemical studies on the thermochemistry of alkyl and peroxyl radicals. J Phys Chem A 103:7094–7104CrossRefGoogle Scholar
  27. 27.
    Gomes JRB, da Silva MAVR (2003) Gas-phase thermodynamic properties of dichlorophenols determined from density functional theory calculations. J Phys Chem A 107:869–874CrossRefGoogle Scholar
  28. 28.
    Vagánek A, Rimarčik J, Lukeš V, Klein E (2012) On the energetics of homolytic and heterolytic O-H bond cleavage in flavonols. Comput Theor Chem 991:192–200CrossRefGoogle Scholar
  29. 29.
    Vagánek A, Rimarčik J, Dropkova K, Lengyel J, Klein E (2014) Reaction enthalpies of O–H bonds splitting-off in flavonoids: the role of non-polar and polar solvent. Comput Theor Chem 1050:31–38CrossRefGoogle Scholar
  30. 30.
    Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J -L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97:679–688CrossRefGoogle Scholar
  31. 31.
    Amić D, Stepanić W, Lučić R, Marković Z, Dmitrić Marković JM (2013) PM6 Study of free radical scavenging mechanisms of flavonoids: why does OH bond dissociation enthalpy effectively represent free radical scavenging activity. J Mol Model 19:2593–2603CrossRefGoogle Scholar
  32. 32.
    Justino GC, Vieira AJSC (2010) Antioxidant mechanisms of Quercetin and Myrcetin in the gas pase and in solution - a comparison and validation of semi-empirical methods. J Mol Model 16:863–876CrossRefGoogle Scholar
  33. 33.
    Antonczak A (2008) Electronic description of four flavonoids revisited by DFT method. J Mol Struct: THEOCHEM 856:38–45CrossRefGoogle Scholar
  34. 34.
    Li M -J, Liu L, Fu Y, Guo Q -X (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-g3b3 method. J Mol Struct: THEOCHEM 815:1–9CrossRefGoogle Scholar
  35. 35.
    Lengyel J, Rimarčik J, Vagánek A, Klein E (2013) On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage. Phys Chem Chem Phys 15:10895–10903CrossRefGoogle Scholar
  36. 36.
    Cai W, Chen Y, Xie L, Zhang H, Hou C (2014) Characterization and density functional theory study of the antioxidant activity of quercetins and its sugar-containing analogues. Eur Food Res Technol 238:121–128CrossRefGoogle Scholar
  37. 37.
    Lespade L, Bersion S (2012) Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids. Free Radic Res 46:346–358CrossRefGoogle Scholar
  38. 38.
    Deepha V, Praveena R, Sivakumar R, Sadasivam K (2014) Experimental and theoretical investigations on the antioxidant activity of isoorientin from Crotalaria globosa. Spectrochim Acta A 121:737–745CrossRefGoogle Scholar
  39. 39.
    Mohajeri A, Asemani SS (2009) Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J Mol Struct 930:15–20CrossRefGoogle Scholar
  40. 40.
    de Souza GLC, de Oliveira LMF, Vicari RG, Brown A (2016) A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1 → 3) linkage flavonols. J Mol Model 22:100–109CrossRefGoogle Scholar
  41. 41.
    Auner BG, Valenta C, Hadgraft J (2003) Influence of phloretin and 6-Ketocholestanol on the skin permeation of Sodium-Fluorescein. J Control Release 89:321–328CrossRefGoogle Scholar
  42. 42.
    Blazso G, Gabor M (1995) Effects of prostaglandin antagonist phloretin derivatives on mouse ear edema induced with different skin irritants. Prostaglandis 50:161–168CrossRefGoogle Scholar
  43. 43.
    Oresajo C (2008) Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid and phloretin against ultraviolet-induced photodamage in human skin. J Cosmet Dermatol 7:290–297CrossRefGoogle Scholar
  44. 44.
    Rezk BM, Haenen GRMM, van der Vijgh WJF, Bast A (2002) The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 295:9–13CrossRefGoogle Scholar
  45. 45.
    Zhang S, Morris ME (2003) Effects of the flavonoids Biochanin A, Morin, Phloretin, and Silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther 304:1258–1267CrossRefGoogle Scholar
  46. 46.
    Park SY, Kim EJ, Shin HK, Kwon DY, Kim MS, Surh YJ, Park JH (2007) Induction of apoptosis in HT-29 colon cancer cells by phloretin. J Med Food 10:581–586CrossRefGoogle Scholar
  47. 47.
    Luo H, Wang YJ, Liu JQ (2008) Study on the effect of phloretin on inhibiting malignant pheotype of BEL-7402 cells. Zhong Yao Cai 31:1019–1021Google Scholar
  48. 48.
    Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL, Lee CH, Liu RS, Lin SY (2009) In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer 124:2210– 2219CrossRefGoogle Scholar
  49. 49.
    Nithyia T, Udayakumar R (2016) In vitro antioxidant properties of Phloretin—an important phytocompound. J Biosci Med 4:85– 94Google Scholar
  50. 50.
    Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux J-L (2007) Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A 111:1138–1145CrossRefGoogle Scholar
  51. 51.
    Yan M, Gong J, Shen P, Yang C (2014) The theory investigation for the antioxidant activity of phloretin: a comparation with naringenin. AMM 513:359–362Google Scholar
  52. 52.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  53. 53.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  54. 54.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200– 1211CrossRefGoogle Scholar
  55. 55.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  56. 56.
    Rassolov V, Pople JA, Ratner M, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976– 984CrossRefGoogle Scholar
  57. 57.
    Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–946CrossRefGoogle Scholar
  58. 58.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  59. 59.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-Consistent Molecular orbital methods. XII. Further extensions of Gaussian-Type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  60. 60.
    La Rocca MV, Rutkowski M, Ringeissen S, Gomar J, Frantz M-C, Ngom S, Adamo C (2016) Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. J Mol Model 22:250–260CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241CrossRefGoogle Scholar
  63. 63.
    Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109CrossRefGoogle Scholar
  64. 64.
    Aufmkolk M, Koehrle J, Hesch R-D, Ingbar SH, Cody V (1986) Crystal structure of phlorizin and the iodothyronine deiodinase inhibitory activity of phloretin analogues. Biochem Pharmacol 35:2221–2227CrossRefGoogle Scholar
  65. 65.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110CrossRefGoogle Scholar
  66. 66.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  67. 67.
    Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation and numerical applications. J Phys Chem B 101:10506–10517CrossRefGoogle Scholar
  68. 68.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01Google Scholar
  69. 69.
    Brinck T, Haeberlein M, Jonsson M (1997) A computational analysis of substituent effects on the O-H bond dissociation energy in phenols: polar versus radical effects. J Am Chem Soc 119:4239–4244CrossRefGoogle Scholar
  70. 70.
    Kalita D, Kar R, Handique JG (2012) A theoretical study on the antioxidant property of gallic acid and its derivatives. J Theory Comput Chem 11:391–402CrossRefGoogle Scholar
  71. 71.
    Paya M, Goodwin PA, De las Heras B, Hoult JRS (1994) Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins. Biochem Pharmacol 48:445–451CrossRefGoogle Scholar
  72. 72.
    Souza LP, Calegari F, Zarbin AJG, Marcolini-Júnior LH, Bergamini MF (2011) Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J Agric Food Chem 59:7620–7625CrossRefGoogle Scholar
  73. 73.
    Hernández-Herrero JA, Frutos MJ (2014) Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem 154:199– 204CrossRefGoogle Scholar
  74. 74.
    Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Instituto de Ciências Exatas e TecnologiaUniversidade Federal do AmazonasItacoatiaraBrazil
  3. 3.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations