Advertisement

Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts

  • Gurleen Kaur Walia
  • Deep Kamal Kaur Randhawa
Original Paper

Abstract

The adsorption behavior of sulfur-based toxic gases (H2S and SO2) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H2S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H2S gas molecule. Conversely, upon SO2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO2 detection as well as a catalyst for H2S reduction.

Graphical abstract

Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H2S and SO2 adsorbed on them

Keywords

Sensor Catalyst Silicene Adsorption DFT 

Notes

Acknowledgments

The authors would like to thank Quantumwise for their valuable support. Walia GK would like to acknowledge University Grants Commission, New Delhi, India, for Senior Research Fellowship.

Funding

This work was supported by Department of Science and Technology (DST) of India Promotion of University Research and Scientific Excellence (PURSE) scheme.

References

  1. 1.
    Tsai W-F, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A (2013) Nat Commun 4:1500CrossRefGoogle Scholar
  2. 2.
    Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J, Lu J (2014) Nano 6:7609Google Scholar
  3. 3.
    Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z, Lu J (2012) Nano 4:3111Google Scholar
  4. 4.
    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Nano Lett 12:113CrossRefGoogle Scholar
  5. 5.
    Liu H, Gao J, Zhao J (2013) J Phys Chem C 117:10353CrossRefGoogle Scholar
  6. 6.
    Jose D, Datta A (2011) Phys Chem Chem Phys 13:7304CrossRefGoogle Scholar
  7. 7.
    Hussain T, Chakraborty S, Ahuja R (2013) Chem Phys Chem 14:3463CrossRefGoogle Scholar
  8. 8.
    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Nat Nanotechnol 10:227CrossRefGoogle Scholar
  9. 9.
    Amorim RG, Scheicher RH (2015) Nanotechnology 26:154002CrossRefGoogle Scholar
  10. 10.
    Sadeghi H, Bailey S, Lambert CJ (2014) Appl Phys Lett 104:103104CrossRefGoogle Scholar
  11. 11.
    Takeda K, Shiraishi K (1994) Phys Rev B 50:14916CrossRefGoogle Scholar
  12. 12.
    Guzmán-Verri GG, Voon LLY (2007) Phys Rev B 76:075131CrossRefGoogle Scholar
  13. 13.
    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Phys Rev Lett 108:155501CrossRefGoogle Scholar
  14. 14.
    Tchalala MR, Enriquez H, Mayne AJ, Kara A, Roth S, Silly MG, Bendounan A, Sirotti F, Greber T, Aufray B, Dujardin G, Ali MA, Oughaddou H (2013) Appl Phys Lett 102:083107CrossRefGoogle Scholar
  15. 15.
    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Nano Lett 12:3507–3511CrossRefGoogle Scholar
  16. 16.
    Chen L, Feng B, Wu K (2013) Appl Phys Lett 102:081602CrossRefGoogle Scholar
  17. 17.
    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer WA et al (2013) Nano Lett 13:685–690CrossRefGoogle Scholar
  18. 18.
    Aizawa T, Suehara S, Otani S (2014) J Phys Chem C 118:23049–23057CrossRefGoogle Scholar
  19. 19.
    Mannix J, Kiraly B, Fisher BL, Hersam MC, Guisinger NP (2014) ACS Nano 8:7538–7547CrossRefGoogle Scholar
  20. 20.
    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Phys Rev Lett 108:245501CrossRefGoogle Scholar
  21. 21.
    Gao N, Zheng WT, Jiang Q (2012) Phys Chem Chem Phys 14:257–261CrossRefGoogle Scholar
  22. 22.
    Lopez-Bezanilla A (2014) J Phys Chem C 118:18788–18792CrossRefGoogle Scholar
  23. 23.
    Gao N, Li J, Jiang Q (2014) Chem Phys Lett 592:222–226CrossRefGoogle Scholar
  24. 24.
    Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R, Shi J, Yang J, Chen C, Lu J (2015) Sci Rep 5:9075CrossRefGoogle Scholar
  25. 25.
    Aghaei SM, Monshi MM, Torres I, Calizo I (2016) RSC Adv 6:17046CrossRefGoogle Scholar
  26. 26.
    Aghaei SM, Calizo I (2015) J Appl Phys 118:104304CrossRefGoogle Scholar
  27. 27.
    Aghaei SM, Calizo I (2015) In: Proceedings of IEEE SoutheastCon (SECon-2015), Fort Lauderdale, 9–12 April 2015, pp 1–6Google Scholar
  28. 28.
    Sahin H, Peeters FM (2013) Phys Rev B 87:085423CrossRefGoogle Scholar
  29. 29.
    Du Y, Xu X (2016) Silicene. In: Spencer MJS, Morishita T (eds) Springer Series in Materials Science, vol 235. Springer, Basel, pp 215–242Google Scholar
  30. 30.
    Friedlein R, Fleurence A, Sadowski JT (2013) Appl Phys Lett 102:221603CrossRefGoogle Scholar
  31. 31.
    Walia GK, Randhawa DKK (2018) Struct Chem 29:257.  https://doi.org/10.1007/s11224-017-1025-9 CrossRefGoogle Scholar
  32. 32.
    Walia GK, Randhawa DKK (2018) Surf Sci 670:33.  https://doi.org/10.1016/j.susc.2017.12.013 CrossRefGoogle Scholar
  33. 33.
    Sivek J, Sahin H, Partoens B, Peeters FM (2013) Phys Rev B 87:085444CrossRefGoogle Scholar
  34. 34.
    Gao N, Zheng WT, Jiang Q (2012) Phys Chem Chem Phys 14:257CrossRefGoogle Scholar
  35. 35.
    Hohenberg P, Kohn W (1964) Phys Rev 155:864CrossRefGoogle Scholar
  36. 36.
    Kohn W, Sham L (1965) Phys Rev 385:1133CrossRefGoogle Scholar
  37. 37.
    QuantumWise. Copenhagen, Denmark: Atomistix Toolkit version 2015.0. Available from: http://www.quantumwise.com
  38. 38.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  39. 39.
    Yamacli S (2014) J Nanopart Res 16:2576CrossRefGoogle Scholar
  40. 40.
    Srivastava P, Jaiswal NK, Sharma V (2014) Superlattice Microst 73:350CrossRefGoogle Scholar
  41. 41.
    Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Nanotechnology 20:185504CrossRefGoogle Scholar
  42. 42.
    Abadir GB, Walus K, Pulfrey DL (2009) J Comput Electron 8:1CrossRefGoogle Scholar
  43. 43.
    Aghaei SM, Monshi MM, Calizo I (2016) RSC Adv 6:94417CrossRefGoogle Scholar
  44. 44.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  45. 45.
    Feng J-W, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z (2014) Comput Mater Sci 87:218CrossRefGoogle Scholar
  46. 46.
    Osborn TH, Farajian AA (2014) Nano Res 7:945CrossRefGoogle Scholar
  47. 47.
    Li SS (2012) Semiconductor physical electronics. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGuru Nanak Dev UniversityJalandharIndia

Personalised recommendations