The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study

  • Marwa Mlaouah
  • Bahoueddine Tangour
  • Mohammed El Khalifi
  • Tijani Gharbi
  • Fabien Picaud
Original Paper
  • 70 Downloads

Abstract

The efficient transport of a drug molecule until its target cell constitutes a significant challenge for delivery processes. To achieve such objectives, solid nanocapsules that protect the immune system during the transport should be developed and controlled at the nanoscale level. From this point of view, nanostructures based on graphene sheets could present some promising properties due to their ultimate size and dimension. In this work, we present theoretical results using DFT calculations, dealing with a graphene-based delivery system. Indeed, we demonstrate the stability of the gemcitabine anticancer molecule when it is encapsulated into two concave graphene sheets organized as a nest. Quantum calculations showed that the most stable state is located inside the nest, which is then formed by two layers distanced 6 Å from each other. For all the optimized systems, we focused on the dependence of the interaction energy on the molecule displacements during its entrance in the graphene nest and its exit from it. We also analyzed their consequence on the local morphological and electronic charge properties.

Graphical Abstract

Adsorption energy (in eV) of gemcitabine drug during its encapsulation inside the nest of grapheneand its release from it

Keywords

Graphene nest Gemcitabine DFT calculations Drug delivery 

Notes

Acknowledgements

Computations have been performed on the supercomputer facilities of the Mesocentre of the University of Franche-Comté. M. M. gratefully acknowledges the support provided by the Tunisian Ministry of High School and Scientific Research. The present work was financially supported by University of FrancheComté in its “accueil de jeunes chercheurs en séjour de recherche post-doctorale” program.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Kuhlmann K, De Castro S, Wesseling J, Ten Kate F, Offerhaus G, Busch O, Van Gulik T, Obertop H, Gouma D (2004) Surgical treatment of pancreatic adenocarcinoma: actual survival and prognostic factors in 343 patients. Eur J Cancer 40:549–558CrossRefGoogle Scholar
  2. 2.
    Pollera CF, Ceribelli A, Crecco M, Oliva C (1997) Prolonged infusion gemcitabine: a clinical phase I study at low- (300 mg/m2) and high-dose (875 mg/m2) levels. Investig New Drugs 15:115–121CrossRefGoogle Scholar
  3. 3.
    Abbruzzese JL, Grunewald R, Weeks E, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber M (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498CrossRefGoogle Scholar
  4. 4.
    Ward S, Morris E, Bansback N, Calvert N, Crellin A, Forman D, Larvin M, Radstone D (2001) A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer. Health Technol Assess (Winch Eng) 5:1–70Google Scholar
  5. 5.
    Messaouda MB, Moussa F, Tangour B, Szwarc H, Abderrabba M (2007) Addition of bio-organic compounds on C 60: a semi-empirical investigation of its reactivity with glycine. J Mol Struct THEOCHEM 809:153–159CrossRefGoogle Scholar
  6. 6.
    Haifa Khemir BT, Moussa F (2015) In silico study of spacer arm length influence on drug vectorization by fullerene C60. J Nanomater 2015:1–8CrossRefGoogle Scholar
  7. 7.
    Mejri A, Vardanega D, Tangour B, Gharbi T, Picaud F (2014) Encapsulation into carbon nanotubes and release of anticancer cisplatin drug molecule. J Phys Chem B 119:604–611CrossRefGoogle Scholar
  8. 8.
    Bessrour R, Belmiloud Y, Hosni Z, Tangour B (2012) Controlling drug efficiency by encapsulation into carbon nanotubes: a theoretical study of the antitumor cisplatin and the anti-HIV TIBO molecules. AIP Conf Proc 1456:229–239CrossRefGoogle Scholar
  9. 9.
    Hosni Z, Bessrour R, Tangour B (2014) 195Pt chemical shift ability to control the antitumor drug cisplatin encapsulated into carbon nanotubes: a theoretical study. J Comput Theor Nanosci 11:318–323CrossRefGoogle Scholar
  10. 10.
    Belmiloud Y, Ouraghi M, Brahimi M, Benaboura A, Charqaoui D, Tangour B (2012) Theoretical study of the anti-human Immuno-deficiency virus TIBO molecule confined into carbon nanotubes. J Comput Theor Nanosci 9:1101–1108CrossRefGoogle Scholar
  11. 11.
    Stout DA (2015) Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering. Curr Pharm Des 21:2037–2044CrossRefGoogle Scholar
  12. 12.
    Lay CL, Liu J, Liu Y (2011) Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices 8:561–566CrossRefGoogle Scholar
  13. 13.
    Chechetka SA, Pichon B, Zhang M, Yudasaka M, Bégin-Colin S, Bianco A, Miyako E (2014) Multifunctional carbon nanohorn complexes for cancer treatment. Chem Asian J 10:160–165CrossRefGoogle Scholar
  14. 14.
    Ajima K, Yudasaka M, Murakami T, Maigna A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2:475–480CrossRefGoogle Scholar
  15. 15.
    Khemir H, Tangour B, Moussa F (2016) An “in silico” study of drug vectorization by a carbon nanocone. J Comput Theor Nanosci 13:3384–3392CrossRefGoogle Scholar
  16. 16.
    Duverger E, Gharbi T, Delabrousse E, Picaud F (2014) Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Phys Chem Chem Phys 16:18425–18432CrossRefGoogle Scholar
  17. 17.
    El Khalifi M, Duverger E, Gharbi T, Boulahdour H, Picaud F (2015) Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule. Phys Chem Chem Phys 17:30057–30064CrossRefGoogle Scholar
  18. 18.
    Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120CrossRefGoogle Scholar
  19. 19.
    Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633CrossRefGoogle Scholar
  20. 20.
    Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53:2002–2009CrossRefGoogle Scholar
  21. 21.
    Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68CrossRefGoogle Scholar
  22. 22.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  23. 23.
    Kim PS, Djazayeri S, Zeineldin R (2011) Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 120:393–403CrossRefGoogle Scholar
  24. 24.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  25. 25.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  26. 26.
    Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323CrossRefGoogle Scholar
  27. 27.
    Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877CrossRefGoogle Scholar
  28. 28.
    Hondroulis E, Zhang Z, Chen C, Li C-Z (2012) Impedance based nanotoxicity assessment of graphene nanomaterials at the cellular and tissue level. Anal Lett 45:272–282CrossRefGoogle Scholar
  29. 29.
    Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257CrossRefGoogle Scholar
  30. 30.
    Jiang T, Sun W, Zhu Q, Burns NA, Khan SA, Mo R, Gu Z (2014) Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv Mater 27:1021–1028CrossRefGoogle Scholar
  31. 31.
    Zhou T, Zhou X, Xing D (2014) Controlled release of doxorubicin from graphene oxide-based charge-reversal nanocarrier. Biomaterials 35:4185–4194CrossRefGoogle Scholar
  32. 32.
    Mo R, Jiang T, Sun W, Gu Z (2015) ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials 50:67–74CrossRefGoogle Scholar
  33. 33.
    Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88CrossRefGoogle Scholar
  34. 34.
    Karlicky F, Kumara Ramanatha Datta K, Otyepka M, Zboril R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:6434–6464CrossRefGoogle Scholar
  35. 35.
    Yuk, J. M., Park, J., Ercius, P., Kim, K., Hellebusch, D. J., Crommie, M. F.,. Lee, J. Y, Zettl, A.,and Alivisatos, A. P. (2012) High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science 336(6077): 61–64Google Scholar
  36. 36.
    Zhu S, Li T (2014) Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8(3):2864–2872CrossRefGoogle Scholar
  37. 37.
    Lu J, Neto AHC, Loh KP (2012) Transforming moiré blisters into geometric graphene nano-bubbles. Nat Commun 3:823CrossRefGoogle Scholar
  38. 38.
    Levy N, Burke SA, Meaker KL, Panlasigui, Zettl A, Guinea F, Castro Neto AHC, Crommie MF (2010) Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329:544–547CrossRefGoogle Scholar
  39. 39.
    Bellido EP, Seminario JM (2010) Molecular dynamics simulations of folding of supported graphene. J Phys Chem C 114:22472–22477CrossRefGoogle Scholar
  40. 40.
    Hill A, Sinner A, Ziegler K (2011) Valley symmetry breaking and gap tuning in graphene by spin doping. New J Phys 13:035023 (14) CrossRefGoogle Scholar
  41. 41.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  42. 42.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  44. 44.
    Ordejon P, Artacho E, Soler JM (1996) Self-consistent order-$N$ density-functional calculations for very large systems. Phys Rev B 53:R10441–R10444CrossRefGoogle Scholar
  45. 45.
    Mallakpour S, Abdolmaleki A, Borandeh S (2014) Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci 307:533–542CrossRefGoogle Scholar
  46. 46.
    Muzi L, Ménard-Moyon C, Russier J, Li J, Chin CF, Ang WH, Pastorin G, Risuleo G, Bianco A (2015) Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nano 7:5383–5394Google Scholar
  47. 47.
    Thomas M, Enciso M, Hilder T (2015) Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J Phys Chem B 119(15):4929–4936CrossRefGoogle Scholar
  48. 48.
    El Khalifi M, Bentin J, Duverger E, Gharbi T, Boulahdour H, Picaud F (2016) Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys Chem Chem Phys 18(36):24994–25001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Carthage, Faculté des Sciences de BizerteBizerteTunisia
  2. 2.Université de Tunis El Manar, Unité de Recherche de Modélisation de Sciences Fondamentales et didactiques, Equipe de Chimie ThéoriqueTunisTunisia
  3. 3.Laboratoire de Réactivité et Chimie des SolidesUniversité de Picardie Jules VerneAmiensFrance
  4. 4.Laboratoire de Nanomédecine, Imagerie et Thérapeutique, Université Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de BesançonBesançonFrance

Personalised recommendations