The effect of Stone-Wales defects and roughness degree on the lubricity of graphene on gold surfaces

  • Sadollah Ebrahimi
Original Paper


In this study, the lubricity of perfect and defective graphene on the gold substrate (Au (111)) has been investigated by using molecular dynamics simulations. The influence of surface morphology as well as the Stone-Wales (SW) defects concentration on the friction of graphene on the gold surface is explored. The SW defects in the range of 0–2.55% are randomly distributed into the graphene. Furthermore, the self-affine fractal method is employed to generate realistic rough surfaces. The effect of the external force, F E , in the range of 0.25−1.0 nN, on the drag coefficients is also investigated. It is shown that the friction force slightly depends on the sliding velocity for all systems. We show that by increasing the defect concentration, the lubricity of graphene nano-sheet slightly decreases. Moreover, it is shown that the friction is almost insensitive to the roughness degree, within the range studied. Both of these effects can be rationalized through variations in the real atomic contact area.

Graphical abstract

By increasing the SW defect concentration of the graphene, the shape of the deformation is different from a sine wave profile, the real contact area, and the friction increases.


Graphene nano-sheet Stone-Wales Lubricity Rough surfaces Molecular dynamics simulation 


  1. 1.
    Buckley DH, Brainard WA (1975) Friction and wear of metals in contact with pyrolytic graphite. Carbon 13:501–508CrossRefGoogle Scholar
  2. 2.
    Ruan JA (1994) Frictional behavior of highly oriented pyrolytic graphite. J Appl Phys 76:8117–8120CrossRefGoogle Scholar
  3. 3.
    Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HM (2004) Superlubricity of graphite. Phys Rev Lett 92:126101CrossRefGoogle Scholar
  4. 4.
    Kwon S, Ko JH, Jeon KJ, Kim YH, Park JY (2012) Enhanced nanoscale friction on fluorinated graphene. Nano Lett 12:6043–6048CrossRefGoogle Scholar
  5. 5.
    Ye Z, Tang C, Dong Y, Martini A (2012) Role of wrinkle height in friction variation with number of graphene layers. J Appl Phys 112:116102CrossRefGoogle Scholar
  6. 6.
    Filleter T, McChesney JL, Bostwick A, Rotenberg E, Emtsev KV, Seyller T, Horn K, Bennewitz R (2009) Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102:086102CrossRefGoogle Scholar
  7. 7.
    Deng Z, Klimov NN, Solares SD, Li T, Xu H, Cannara RJ (2012) Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene. Langmuir 29:235–243CrossRefGoogle Scholar
  8. 8.
    Xu L, Ma TB, Hu YZ, Wang H (2011) Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology 22:285708CrossRefGoogle Scholar
  9. 9.
    Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31–42CrossRefGoogle Scholar
  10. 10.
    Berman D, Erdemir A, Sumant AV (2013) Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54:454–459CrossRefGoogle Scholar
  11. 11.
    Berman D, Erdemir A, Sumant AV (2013) Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59:167–175CrossRefGoogle Scholar
  12. 12.
    Berman D, Deshmukh SA, Sankaranarayanan SKRS, Erdemir A, Sumant AV (2015) Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348:1118CrossRefGoogle Scholar
  13. 13.
    Liu Z, Yang J, Grey F, Liu JZ, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q (2012) Observation of microscale superlubricity in graphite. Phys Rev Lett 108:205503CrossRefGoogle Scholar
  14. 14.
    Lodge MS, Tang C, Blue BT, Hubbard WA, Martini A, Dawson BD, Ishigami M (2016) Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance. Sci Rep 6:31837CrossRefGoogle Scholar
  15. 15.
    Dong Y, Wu X, Martini A (2013) Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24:375701CrossRefGoogle Scholar
  16. 16.
    Ko JH, Kwon S, Byun IS, Choi JS, Park BH, Kim YH, Park JY (2013) Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol Lett 50:137–144CrossRefGoogle Scholar
  17. 17.
    Smolyanitsky A, Killgore JP, Tewary VK (2012) Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85:035412CrossRefGoogle Scholar
  18. 18.
    Liu P, Zhang YW (2011) A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. Carbon 49:3687–3697CrossRefGoogle Scholar
  19. 19.
    Smolyanitsky A, Killgore JP (2012) Anomalous friction in suspended graphene. Phys Rev B 86:125432CrossRefGoogle Scholar
  20. 20.
    Khomenko AV, Prodanov NV, Persson BNJ (2013) Atomistic modelling of friction of cu and au nanoparticles adsorbed on graphene. Cond Matt Phys 16:33401CrossRefGoogle Scholar
  21. 21.
    Ye Z, Egberts P, Han GH, Johnson ATC, Carpick RW, Martini A (2016) Load-dependent friction hysteresis on Graphene. ACS Nano 10:5161–5168CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Diao D, Kubo M (2015) Nanoscratching of multi-layer graphene by molecular dynamics simulations. Tribol Int 88:85–88CrossRefGoogle Scholar
  23. 23.
    Dietzel D, Feldmann M, Schwarz UD, Fuchs H, Schirmeisen A (2013) Scaling Laws of structural lubricity. Phys Rev Lett 111:235502CrossRefGoogle Scholar
  24. 24.
    Cihan E, Ipek SI, Durgun E, Baykara MZ (2016) Structural lubricity under ambient conditions. Nat Commun 7:12055CrossRefGoogle Scholar
  25. 25.
    Ye Z, Balkanci A, Martini A, Baykara MZ (2017) Effect of roughness on the layer-dependent friction of few-layer graphene. Phys Rev B 96:6Google Scholar
  26. 26.
    Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X, Müllen K, Passerone D, Pignedoli CA, Ruffieux P, Fasel R, Meyer E (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957–961CrossRefGoogle Scholar
  27. 27.
    Xiao JR, Staniszewski J, Jr JWG (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88:602–609CrossRefGoogle Scholar
  28. 28.
    Fan BB, Yang XB, Zhang R (2010) Anisotropic mechanical properties and stone–Wales defects in graphene monolayer: a theoretical study. Phys Lett A 374:2781–2784CrossRefGoogle Scholar
  29. 29.
    Xiaoa JR, Staniszewskia J, Gillespie JW Jr (2010) Tensile behaviors of graphene sheets and carbon nanotubes with multiple stone–Wales defects. Mater Sci Eng A 527:715–723Google Scholar
  30. 30.
    Lherbier A, Dubois SMM, Declerck X, Roche S (2011) Two-dimensional Graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition. Phys Rev Lett 106:046803CrossRefGoogle Scholar
  31. 31.
    Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattice Microst 51:274–289CrossRefGoogle Scholar
  32. 32.
    Jing N, Xue Q, Ling C, Shan M, Zhang T, Zhoub X, Jiao Z (2012) Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv 2:9124–9129CrossRefGoogle Scholar
  33. 33.
    Neek-Amal M, Peeters FM (2012) Effect of grain boundary on the buckling of graphene nanoribbons. Appl. Phys Lett 100:101905CrossRefGoogle Scholar
  34. 34.
    Baimova JA, Bo L, Dmitriev SV, Zhou K, Nazarov AA (2013) Effect of stone-thrower-Wales defect on structural stability of graphene at zero and finite temperatures. EPL103:46001Google Scholar
  35. 35.
    Lehmann T, Ryndyk DA, Cuniberti G (2013) Combined effect of strain and defects on the conductance of graphene nanoribbons. Phys Rev B 88:125420CrossRefGoogle Scholar
  36. 36.
    Wang S-P, Guo J-G, Zhou L-J (2013) Influence of stone–Wales defects on elastic properties of graphene nanofilms. Phys E 48:29–35CrossRefGoogle Scholar
  37. 37.
    Kotakoski J, Eder FR, Meyer JC (2014) Atomic structure and energetics of large vacancies in graphene. Phys Rev B 89:201406(R)CrossRefGoogle Scholar
  38. 38.
    Partovi-Azar P, Jand SP, Namiranian A, Rafii-Tabar H (2013) Electronic features induced by stone-Wales defects in zigzag and chiral carbon nanotubes. Comput Mater Sci 29:82–86CrossRefGoogle Scholar
  39. 39.
    Sun YJ, Ma F, Ma DY, Xu KW, Chu PK (2012) Stress-induced annihilation of stone–Wales defects in graphene nanoribbons. J Phys D Appl Phys 45:305303CrossRefGoogle Scholar
  40. 40.
    Rodrigues JNB, PAD G, NFG R, Ribeiro RM, JMBLd S, NMR P (2011) Zigzag graphene nanoribbon edge reconstruction with stone-Wales defects. Phys Rev B 84:155435CrossRefGoogle Scholar
  41. 41.
    Lusk MT, Wu DT, Carr LD (2010) Graphene Nanoengineering and the inverse-stone-thrower-Wales defect. Phys Rev B 81:155444CrossRefGoogle Scholar
  42. 42.
    Ma J, Alfè D, Michaelides A, Wang E (2009) Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys Rev B 80:033407CrossRefGoogle Scholar
  43. 43.
    Wang C, Y-h D (2013) Catalytically healing the stone–Wales defects in graphene by carbon adatoms. J Mater Chem A 1:1885–1891CrossRefGoogle Scholar
  44. 44.
    He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of stone–thrower–Wales defects on mechanical properties of graphene sheets – a molecular dynamics study. Carbon 75:124–132CrossRefGoogle Scholar
  45. 45.
    Ebrahimi S (2015) Influence of stone–Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain. Solid State Commun 220:17–20CrossRefGoogle Scholar
  46. 46.
    Ewen JP, Restrepo SE, Morgan N, Dini D (2017) Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribol Int 107:264–273CrossRefGoogle Scholar
  47. 47.
    Zheng X, Zhu HT, Tieu AK, Kosasih B (2014) Roughness and lubricant effect on 3D atomic asperity contact. Tribol Lett 53:215–223CrossRefGoogle Scholar
  48. 48.
    Spijker P, Anciaux G, Molinari JF (2011) Dry sliding contact between rough surfaces at the atomistic scale. Tribol Lett 44:279–285CrossRefGoogle Scholar
  49. 49.
    Friedrichs W, Ohler B, Langel W, Montiand S, Koppen S (2011) Adsorption of collagen Nanofibrils on rough TiO2:a molecular dynamics study. Adv Eng Mater 13:B334–B342CrossRefGoogle Scholar
  50. 50.
    Yang C, Tartaglino U, Persson BNJ (2006) A multiscale molecular dynamics approach to contact mechanics. Eur Phys J E 19:47–58CrossRefGoogle Scholar
  51. 51.
    Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115:3840–3861CrossRefGoogle Scholar
  52. 52.
    Makse H, Havlin S, Schwartz M, Stanley HE (1996) Method for generating long-range correlations for large systems. Phys Rev E 53:5445–5449CrossRefGoogle Scholar
  53. 53.
    Ebrahimi S, Ghafoori-Tabrizi K, Rafii-Tabar H (2013) Molecular dynamics simulation of the adhesive behavior of collagen on smooth and randomly rough TiO2 and Al2O3 surfaces. Comput Mater Sci 71:172–178CrossRefGoogle Scholar
  54. 54.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  55. 55.
    Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486CrossRefGoogle Scholar
  56. 56.
    Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the Fcc metals cu, Ag, au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991CrossRefGoogle Scholar
  57. 57.
    Guerra R, Tartaglino U, Vanossi A, Tosatti E (2010) Ballistic nanofriction. Nat. Mater. 9:634–637CrossRefGoogle Scholar
  58. 58.
    Pilmpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1–19CrossRefGoogle Scholar
  59. 59.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  60. 60.
    Allen MP, Tildesley DJ (1986) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  61. 61.
    Krim J (1996) Atomic-scale origins of friction. Langmuir 12:4564–4566CrossRefGoogle Scholar
  62. 62.
    Bowden FP, Tabor D (1964) The friction and lubrication of solids. Oxford University Press, OxfordGoogle Scholar
  63. 63.
    Yifei M, Kevin TT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRefGoogle Scholar
  64. 64.
    Yifei M, Szlufarska I (2010) Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81:035405CrossRefGoogle Scholar
  65. 65.
    Gnecco E, Meyer E (2007) Fundamentals of friction and wear on the Nanoscale. Springer, BerlinCrossRefGoogle Scholar
  66. 66.
    Ritter C, Heyde M, Stegemann B, Rademann K, Schwarz UD (2005) Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys Rev B 71:085405CrossRefGoogle Scholar
  67. 67.
    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz UD (2008) Frictional duality observed during nanoparticle sliding. Phys Rev Lett 101:125505CrossRefGoogle Scholar
  68. 68.
    Dietzel D, Feldmann M, Herding C, Schwarz UD, Schirmeisen A (2010) Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Tribol Lett 39:273–281CrossRefGoogle Scholar
  69. 69.
    Dietzel D, Mönninghoff T, Herding C, Feldmann M, Fuchs H, Stegemann B, Ritter C, Schwarz UD, Schirmeisen A (2010) Frictional duality of metallic nanoparticles: influence of particle morphology, orientation, and air exposure. Phys Rev B 82:035401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of KurdistanSanandajIran
  2. 2.Research Center for NanotechnologyUniversity of KurdistanSanandajIran

Personalised recommendations