Skip to main content
Log in

Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11(2):81s–110s

    Article  Google Scholar 

  2. Tamblyn R, Berkson L, Dauphinee WD, Gayton D, Grad R, Huang A, Isaac L, McLeod P, Snell L (1997) Unnecessary prescribing of NSAIDs and the management of NSAID-related gastropathy in medical practice. Ann Intern Med 127(6):429–438

    Article  CAS  Google Scholar 

  3. Masferrer JL, Zweifel BS, Seibert K, Needleman P (1990) Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J Clin Invest 86(4):1375–1379

    Article  CAS  Google Scholar 

  4. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  Google Scholar 

  5. Martinez-Gonzalez J, Badimon L (2007) Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr Pharm Des 13(22):2215–2227

    Article  CAS  Google Scholar 

  6. Weir MR, Sperling RS, Reicin A, Gertz BJ (2003) Selective COX-2 inhibition and cardiovascular effects: a review of the rofecoxib development program. Am Heart J 146(4):591–604

    Article  CAS  Google Scholar 

  7. Selg E, Buccellati C, Andersson M, Rovati GE, Ezinga M, Sala A, Larsson AK, Ambrosio E, Låstbom L, Capra V, Dahlén B, Ryrfeldt Å, Folco GC, Dahlén SE (2007) Antagonism of thromboxane receptors by diclofenac and lumiracoxib. Br J Pharmacol 152(8):1185–1195

    Article  CAS  Google Scholar 

  8. Rovati GE, Sala A, Capra V, Dahlen SE, Folco G (2010) Dual COXIB/TP antagonists: a possible new twist in NSAID pharmacology and cardiovascular risk. Trends Pharmacol Sci 31(3):102–107

    Article  CAS  Google Scholar 

  9. Bertinaria M, Shaikh MA, Buccellati C, Cena C, Rolando B, Lazzarato L, Fruttero R, Gasco A, Hoxha M, Capra V, Sala A, Rovati GE (2012) Designing multitarget anti-inflammatory agents: chemical modulation of the lumiracoxib structure toward dual thromboxane antagonists-COX-2 inhibitors. Chem Med Chem 7(9):1647–1660

    Article  CAS  Google Scholar 

  10. Krishna A, Yadav A (2012) Lead compound design for TPR/COX dual inhibition. J Mol Model 18(9):4397–4408

    Article  CAS  Google Scholar 

  11. Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48(21):6523–6543

    Article  CAS  Google Scholar 

  12. Guerrero Jé A, Navarro-Nuñez L, Lozano Mí L, Martínez C, Vicente V, Gibbins JM (2007 Aug) Rivera J flavonoids inhibit the platelet TxA(2) signalling pathway and antagonize TxA(2) receptors (TP) in platelets and smooth muscle cells. Br J Clin Pharmacol 64(2):133–144

    Article  Google Scholar 

  13. Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J (2005) Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost 3(2):369–376

    Article  CAS  Google Scholar 

  14. Ribeiro D, Freitas M, Tome SM, Silva AM, Laufer S, Lima JL, Fernandes E (2015) Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 38(2):858–870

    Article  CAS  Google Scholar 

  15. Rosenkranz HS, Thampatty BP (2003) SAR: flavonoids and COX-2 inhibition. Oncol Red 13(12):529–535

    Article  Google Scholar 

  16. Llorens O, Perez JJ, Palomer A, Mauleon D (2002) Differential binding mode of diverse cyclooxygenase inhibitors. J Mol Graph Model 20(5):359–371

    Article  CAS  Google Scholar 

  17. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384(6610):644–648

    Article  CAS  Google Scholar 

  18. Weis WI, Kobilka BK (2008) Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol 18(6):734–740

    Article  CAS  Google Scholar 

  19. Kufareva I, Katritch V, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR dock 2013 assessment: meeting new challenges. Structure 22(8):1120–1139

    Article  CAS  Google Scholar 

  20. Huang JS, Ramamurthy SK, Lin X, Le Breton GC (2004) Cell signalling through thromboxane A2 receptors. Cell Signal 16(5):521–533

    Article  CAS  Google Scholar 

  21. So SP, Wu J, Huang G, Huang A, Li D, Ruan KH (2003) Identification of residues important for ligand binding of thromboxane A2 receptor in the second extracellular loop using the NMR experiment-guided mutagenesis approach. J Biol Chem 278(13):10922–10927

    Article  CAS  Google Scholar 

  22. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  23. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  Google Scholar 

  24. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(web server issue):29

    Google Scholar 

  25. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2008) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protocols 4(1):1–13

    Article  Google Scholar 

  26. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510-4

  27. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71(1):261–277

    Article  CAS  Google Scholar 

  28. Benkert P, Tosatto SC, Schwede T (2009) Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 9:173–180

    Article  Google Scholar 

  29. Helles G (2008) A comparative study of the reported performance of ab initio protein structure prediction algorithms. J R Soc Interface 5(21):387–396

    Article  CAS  Google Scholar 

  30. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 8:108–117

    Article  Google Scholar 

  31. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    Article  CAS  Google Scholar 

  32. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Meth 12(1):7–8

    Article  CAS  Google Scholar 

  33. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(40):1471–2105

    Google Scholar 

  34. Albuquerque MG, Hopfinger AJ, Barreiro EJ, de Alencastro RB (1998) Four-dimensional quantitative structure-activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J Chem Inf Comput Sci 38(5):925–938

    Article  CAS  Google Scholar 

  35. Singh KD, Muthusamy K (2013) Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT1 and ETA receptor antagonists. Acta Pharmacol Sin 34(12):1592–1606

    Article  CAS  Google Scholar 

  36. Wu J, So S-P, Ruan K-H (2003) Solution structure of the third extracellular loop of human thromboxane A2 receptor. Arch Biochem Biophys 414:287–293

    Article  CAS  Google Scholar 

  37. Ruan K-H, Wu J, So S-P, Jenkins LA, Ruan C-H (2004) NMR structure of the thromboxane A2 receptor ligand recognition pocket. Eur J Biochem 271:3006–3016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.D. is grateful to the Center for Biomedical Engineering, IIT Gandhinagar for financial support of this work. B.D. gratefully acknowledges Dr. Pritesh Bhatt and Mr. Vinod Devaraji (Application Scientist, Schrödinger, Bangalore) for technical assistance in running the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Datta.

Electronic supplementary material

ESM 1

(DOCX 4237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadianawala, M., Mahapatra, A.D., Yadav, J.K. et al. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists. J Mol Model 24, 69 (2018). https://doi.org/10.1007/s00894-018-3620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3620-0

Keywords

Navigation